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Existing flexible docking approaches model the ligand and receptor flexibility either separately or in a loosely
coupled manner, which captures the conformational changes inefficiently. Here, we propose a flexible docking
approach, MedusaDock, which models both ligand and receptor flexibility simultaneously with sets of discrete
rotamers. We developed an algorithm to build the ligand rotamer library “on-the-fly” during docking
simulations. MedusaDock benchmarks demonstrate a rapid sampling efficiency and high prediction accuracy
in both self- (to the cocrystallized state) and cross-docking (to a state cocrystallized with a different ligand),
the latter of which mimics the virtual screening procedure in computational drug discovery. We also perform
a virtual screening test of four flexible kinase targets, including cyclin-dependent kinase 2, vascular endothelial
growth factor receptor 2, HIV reverse transcriptase, and HIV protease. We find significant improvements of
virtual screening enrichments when compared to rigid-receptor methods. The predictive power of MedusaDock
in cross-docking and preliminary virtual-screening benchmarks highlights the importance to model both
ligand and receptor flexibility simultaneously in computational docking.

INTRODUCTION

Specific interactions between small molecules and protein
receptors are of crucial physiological and pharmacological
importance. The ability to predict atomic interactions between
ligand and receptor is extremely useful for understanding
biological processes and for rational drug design. The major
challenge in computational prediction of protein-ligand
interactions is the large number of degrees of freedom,
including protein backbone and side chain flexibilities, ligand
conformational flexibility, and ligand rigid-body motion. Of
particular interest is the receptor flexibility, which is essential
to capture the receptor conformational changes upon ligand
binding, i.e., the induced fit effect.1-5 However, incorporating
receptor flexibility is also computationally challenging and has
been one of the foci of recent protein-ligand docking studies.3-10

For example, the generation of an ensemble of multiple
predetermined conformations has been proposed to model the
receptor flexibility. The receptor conformation ensemble can
be obtained experimentally by X-ray crystallography under
different conditions and NMR spectroscopy11-14 or compu-
tationally by molecular dynamics simulations,6,15-18 com-
parative modeling,19 and normal-mode analysis.10,20 These
ensemble approaches also have limitations. For example,
multiple experimental conformations are not available for
most proteins. Additionally, the predetermined receptor
conformational ensemble may not capture receptor confor-
mational changes upon binding to novel ligands. Such a
limitation could be avoided if we model the flexibility of
both ligand and receptor simultaneously.

Recently, several approaches have been proposed for the
simultaneous sampling of the receptor and ligand flexibility
during docking.7-9,21-23 For example, protein side chain
rotamer libraries, where the continuous protein side chain

conformational space is modeled by a set of discrete states,24

have been used to model protein flexibility during dock-
ing.7,9,21-23 It has been shown that including receptor side
chain rotamers of a few key residues for docking9,22 or
several highly probable rotamers of the binding pocking
residues7 can significantly improve the ability to find near-
native poses in cross-docking studies when compared to the
rigid-receptor docking. Specifically, Baker and co-workers8,23

have recently developed the RosettaLigand method to
extensively sample the receptor side chain conformations
near the binding pocket and also found that the incorporation
of receptor flexibility increases the probability of finding
near-native poses with low energies. In RosettaLigand, the
flexibility of a ligand is modeled by docking with a set of
diverse ligand conformations,8 which can be generated either
by other methods23 or by the recent extension of RosettaLi-
gand.25 However, during each RosettaLigand docking, the
ligand conformation is predetermined, and the ligand con-
formational flexibility is sampled with limited dihedral angle
perturbation, the search for the native pose is constrained
by the availability of the native-like ligand conformations
in the input ensemble of ligand conformations or rotamers.26

Therefore, it is important to sample ligand conformations
sufficiently during the flexible ligand and receptor docking.

To simultaneously and efficiently sample the receptor and
ligand conformational flexibilities, we propose to model the
ligand conformations with a set of discrete rotamers, in a
similar way to protein side chains. Protein side chain rotamer
libraries24 can be built for 20 amino acids from high-
resolution protein structures. However, there is not enough
experimental data to build such a rotamer library for a large
variety of ligands. Additionally, many small molecule ligands
are very flexible, with multiple rotatable bonds, and it is
practically impossible to enumerate all possible conforma-
tions. Therefore, instead of using a predetermined set of* Corresponding author. E-mail: dokh@med.unc.edu.
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ligand rotamers, we build the ligand rotamer library in a
stochastic manner for each ligand during docking simulations.
Using the stochastic rotamer library of ligands (STROLL),
we are able to model the protein side chain27 and the ligand
flexibilities in a unified and simultaneous manner in Me-
dusaDock. We use the recently developed MedusaScore28

to guide the docking sampling and to rank the ligand poses.
We benchmark MedusaDock with self- and cross-docking
studies on a set of proteins cocrystallized with different
ligands. We find that MedusaDock is able to sample near-
native poses in all self-docking and in 95% of cross-docking
cases. The near-native poses are top-ranked in 80 and 56%
of self- and cross-docking cases, respectively, and are ranked
within the top 10 in 95 and 72% of self- and cross-docking
cases, respectively, which is among the best reported
performances of flexible-ligand and -receptor docking algo-
rithms. Interestingly, although the success rate in terms of
placing the near-native poses as the best ranked is reduced
for cross-docking as compared to self-docking, we find that
the predicted binding energiessthe MedusaScore of the best-
ranked posessbetween cross- and self-docking are close to
each other. Assuming self-docking recapitulates the actual
binding, which is often the case with near-native poses best
ranked, we can approximate the binding energy with
predicted values from cross-docking. This feature makes
MedusaDock useful in virtual-screening (VS), where pre-
dicted binding energies from cross-docking are used to select
the true binding ligands from decoys. Indeed, we find that
compared to the rigid docking method, MedusaDock sig-
nificantly improves the virtual-screening enrichment of
cyclin-dependent kinase 2 (CDK2), vascular endothelial
growth factor receptor 2 (VEGFr2), HIV reverse transcriptase
(HIVRT), and HIV protease (HIVPR), four kinase targets
which are known to be very flexible.7,29,30

RESULTS

Our docking method is comprised of STROLL generation,
clustering of the generated ligand rotamers for initial coarse-
and fine-docking for pose minimization (Methods). In order
to evaluate whether the randomly generated ligand rotamer
library sufficiently samples the conformational space, we test
whether the STROLL library contains conformations similar
to the X-ray crystallographic structure (Table 1). For each
ligand, we generate 100 sets of STROLL using different
random seeds. We align two conformations using the
Kabsch31 algorithm and compute the root-mean-square
deviation (kRMSD) to determine the similarity between these
two ligand conformations. We find that for all cases we are
able to find a significant number of native-like rotamer
(kRMSD < 2.0 Å and/or < 1.0 Å) conformations. Therefore,
the stochastic rotamer library of ligands has sufficient
sampling of the ligand conformational space.

Medusa uses an amino acid rotamer library to model
protein side chain conformations.27,32,33 In principle, we can
model ligand conformational flexibility in the same way as
amino acids using the ligand rotamers of STROLL. However,
due to the additional translational and rotational degrees of
freedom of the ligand, which are different from those in
protein side chains, rigid-body minimization is necessary
after each ligand rotamer change. If the number of available
ligand rotamers is large, then direct modeling of the ligand

rotamer change and the associated rigid-body motion is
computationally prohibitive. To increase the ligand pose
sampling efficiency, we propose a two-step docking ap-
proach, as illustrated in Figure 1. Briefly, each docking run
starts with the generation of the STROLL, followed by
clustering of the rotamers in STROLL with a kRMSD cutoff
of 2.0 Å. For each of the NC cluster centroids, we perform
coarse docking to search for the best-fit poses within the
docking boundary box. For the NC coarse-docked poses, we
sort and group similar poses and choose the top NF (∼10%
NC) poses for further fine docking. The coarse-docking step
is designed to rapidly sample the rigid-body motion of the
ligand for a set of representative ligand conformations.
During coarse docking, the ligand rigid-body motion and the
receptor side chain rotamers are iteratively sampled. In fine-
docking, both the ligand and the receptor side chain rotamers
are sampled simultaneously. At the end of a MedusaDock
run, we have NF minimized poses.

The computational time for the STROLL generation and
the ligand rotamer clustering is usually smaller than 1 s CPU
time on an Intel 2.33G Hz Xeon processor. Each coarse-
docking run takes ∼2 s, and each fine-docking run takes ∼1

Table 1. Properties of the STROLL Librarya

PDB ID number of rotamers P(1.0 Å) P(2.0 Å) average NC

1A4Q 1000 0.023 0.35 8.5
1AQ1 7 0.72 0.71 3.0
1BMK 311 0.18 1.00 2.0
1C1C 540 0.09 0.78 2.4
1CX2 384 0.13 1.00 1.1
1DBJ 1 1.00 1.00 1.0
1DM2 2 0.50 1.00 1.0
1DI9 600 0.09 0.97 2.7
1DWC 1000 0.00 0.05 36.8
1DWD 1000 0.00 0.04 42.2
1ERR 923 0.04 0.45 8.2
1FM9 1000 0.00 0.07 84.1
1KI4 350 0.23 0.92 2.0
1KIM 36 0.42 0.97 2.0
1KSN 1000 0.02 0.24 14.6
1NSC 420 0.23 1.00 1.1
1P8D 27 0.15 0.78 3.0
1PMN 1000 0.12 0.76 3.2
1PMV 1 1.00 1.00 1.0
1PPC 1000 0.00 0.03 56.2
1PPH 1000 0.001 0.09 23.0
1PQ6 1000 0.00 0.03 109.0
1PQC 1000 0.002 0.25 7.6
1Q4L 274 0.06 0.59 5.8
1RTH 10 1.00 1.00 1.0
1STC 4 0.50 0.50 3.0
1XKA 1000 0.003 0.24 17.1
1YDS 420 0.15 0.74 2.6
2DBL 648 0.12 0.97 2.2
2PRG 787 0.004 0.41 13.5
3ERT 1000 0.007 0.50 6.6
3PGH 216 0.24 1.00 1.2
4TIM 53 0.00 1.00 1.0
6TIM 18 0.17 1.00 1.0

a Ligands are taken from the corresponding PDB files. For each
ligand, 100 independent runs of STROLL generation are performed
to compute the statistics. P(1.0 Å) and P(2.0 Å) correspond to the
probability of finding ligand rotamers within 1.0 Å or 2.0 Å
kRMSD from the native ligand conformation in the PDB. The
average NC corresponds to the average number of clusters using a
kRMSD cutoff of 2 Å. Note that we limit the maximum number of
rotamers to 1000 (Methods).
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min. Therefore, for a ligand with 30 clusters, the computa-
tional time for each MedusaDock run is approximately 4-5
min.

Self- and Cross-Docking Benchmarks. We compile a set
of 18 pairs of receptor-ligand structures from literature,8,10,34

where each case has two different receptor conformations
cocrystallized with different ligands. These proteins with their
PDB35 codes are listed in Table 2. For each docking, we
perform 100 independent runs of MedusaDock simulations
and rank the poses. In principle, the poses should be ranked
according to the total binding energy. However, in some
cases a low binding energy pose can result from unfavorable
receptor side chain conformations. Therefore, it is important
to take the energy of the whole system into account when
searching for the near-native ligand pose (Methods).

We perform self-docking simulations, where each ligand
is docked to the corresponding cocrystallized receptor
conformation state. To evaluate the predictions, we refer the
RMSD of the ligands in the two ligand-receptor poses as
RMSD, where only the receptors are aligned. For all cases,
MedusaDock is able to find near-native ligand poses with

RMSD smaller than 2 Å from the native state. In 28 out of
35 cases, the near-native poses are top ranked, and in 31
out of 35, the near-native poses are ranked in the top 2. Only
in 2 cases the near-native poses are ranked below the top
10. The results are summarized in Table 2. In Figure 2, we
present two examples where the near-native poses are
correctly predicted as best-ranked, one is PPARγ (PDB code:
2PRG; Figure 2A,B,C), and the other is LXR � ligand
binding domain (PDB code: 1PQC; Figure 2D,E,F). For
2PRG, the MedusaScore alone cannot distinguish the near-
native poses from the decoys (Figure 2B). For example, the
pose with the lowest MedusaScore has an RMSD larger than
10 Å. Using the ranking energy (Methods), we are able to
separate near-native poses from decoys (Figure 2C). In the
case of 1PQC, the MedusaScore is able to distinguish the
near-native pose from the decoys, although there is one decoy
with a MedusaScore very similar to the lowest MedusaScore
(Figure 2E). By ranking the poses using the ranking energy,
the near-native poses can be unambiguously selected. There
are two cases, estrogen receptor (PDB code: 3ERT) and P38
MAP kinase (PDB code: 1BMK), where the near-native
poses are ranked below the top 10 (Table 2 and Figure
2G,H,I). For 3ERT, we find that the best-ranked ligand pose
and the native pose are partially symmetric, with most of
the heavy atoms overlapping (Figure 2G). In the case of
1BMK, the pose with the higher number of contacts to the
receptor is selected as the best-ranked pose over the native
pose (Figure 2H,I), which is probably due to the inaccuracy
of the force field. Therefore, although MedusaDock includes
a large number of degrees of freedom in the modeling, the
ability to find near-native poses for all self-docking cases
and correctly rank the near-native pose as the top one in
80% of cases and the top two in ∼90% of cases highlights
the docking efficiency and accuracy of MedusaDock.

In cross-docking simulations, the ligand is docked to a
receptor conformational state cocrystallized with a different
ligand. For the 18 pairs of ligand-receptor complexes, we
dock each of the ligands to the receptor structure cocrystal-
lized with the other ligand. In all 36 except two cases, LXR
� ligand binding domain (1PQC ligand docked to 1PQ6
receptor) and JNK3 (1PMN ligand docked to 1PMV recep-
tor), the near-native ligand poses are sampled by Medusa-
Dock. In the case of 1PMN ligand docked to 1PMV receptor,
the backbone of the 1PMV receptor has severe clashes
with the native ligand pose of 1PMN (Figure 3A), which
prevents the sampling of the near-native pose. In the case
of 1PQC ligand docked to 1PQ6 receptor, the lowest RMSD
pose has a RMSD of only 2.21 Å (Figure 3B). In 20 out of
36 cases, the near-native poses are identified as the best-
ranked poses, 24 out of 36 cases within the first 5, and 26
out of 36 cases within the first 10. The success rate in terms
of ranking the near-native poses as best-ranked is reduced
for cross-docking as compared to that of self-docking, as is
commonly observed with other docking approaches.9,10,23

Due to the stochastic nature of the docking approach, it is
usually not straightforward to compare the ranking of the
near-native poses of specific targets between different
methods. For example, there are a few cross-docking cases
where the ranking of the near-native poses are not as good
as those by other methods, such as 1FM9 versus 2PRG by
RosettaLigand23 or 1BMK versus 1DI9 by ICM.10 In some

Figure 1. Schema for the MedusaDock protocol. Each docking
simulation starts with the generation of the STROLL, followed by
the clustering of ligand rotamers (Methods) with a kRMSD cutoff
of 2 Å. The NC cluster centroids are used as the representative ligand
conformations for the initial coarse-docking, where the ligand is
kept rigid and the ligand binding pocket is rapidly sampled
(Methods). Since only a small number of the ligand rotamers is
used and the ligand is kept rigid during coarse-docking, the near-
native pose is not necessarily the lowest energy pose but usually is
among the low-energy poses. We sort the NC poses according to
binding energies. We group similar poses together if the RMSD of
two ligand poses is smaller than their kRMSD plus 2 Å. The
grouping of similar poses will reduce the necessary number of the
more expensive calculations of fine docking. We select the top NF

(∼10% NC) groups of lowest energy poses for the next round of
fine docking. For each group of coarse-docked poses, we perform
fine docking to enrich the ligand rotamers and to minimize the total
energy (Methods). During fine docking, we add the ligand rotamers
within 2.0 Å kRMSD to the initial centroid rotamer in order to
enrich the ligand conformation. For each of the members in a group,
we perform the enrichment step. We only select the lowest energy
poses for further minimization (Methods). Therefore, we will have
NF poses for each MedusaDock run.
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other cases such as 1P8D versus 1PQ6, MedusaDock has
better predictions than the others. Overall, the percentages
of near-native poses top-ranked and generated for Medusa-
Dock are 56 (20/36) and 94% (34/36), respectively. The same
percentages for RosettaLigand23 are 50 (10/20) and 90% (18/
20), and for ICM10 are 57 (16/28) and 89% (25/28). Here,
the bracket indicates the number of cases that have been
studied. Therefore, the performance of cross-docking by
MedusaDock is comparable to or slightly better than the
performances of other flexible docking programs.

One important application of a docking program is virtual
screening, where a library of ligands is docked to the apo-
or holo-structure of a target receptor in order to find binding
ligands, a process mimicked by the cross-docking exercise.
The key for the success of virtual screening is to accurately
predict the binding energy for a ligand. Although the success
rate of cross-docking in terms of identifying the near-native
poses as best ranked is not as high as that of self-docking,
a docking program will still be useful in virtual-screening if
the predicted binding energy of cross-dockingsthe Me-
dusaScore of the best-ranked posesis close to the value of
that for self-docking. Here, we assume that the predicted
binding energy of self-docking is sufficiently accurate to
approximate the actual binding affinity,28 as in most cases
of self-docking the near-native poses are best ranked. We

plot the binding energy of cross-docking versus that of self-
docking (Figure 3C) and find that the two sets of binding
energies are very close to each other, with a correlation
coefficient of 0.98 and a regression slope of 0.99. Why is
the predicted binding energy of cross-docking close to that
of self-docking even when the near-native pose is not best
ranked in cross-docking? Since MedusaScore is a physically
based scoring function, near-native poses in both cross- and
self-docking will feature similar physical interactions, and
in turn, similar MedusaScores. The above question can be
answered if the MedusaScore of the best-ranked pose is close
to that of the best-ranked near-native pose. Indeed, we find
that the MedusaScore of the best-ranked poses in cross-
docking is similar to that of the corresponding best-ranked
native-like poses (Figure 3D). For the cases where the best-
ranked pose is near-native, the two values will be the same,
but for cases where the near-native poses are not top ranked,
their energies are also close. Therefore, the benchmark of
self- and cross-docking suggests that MedusaDock might be
useful in virtual screening. Next, we perform a preliminary
virtual-screening test of MedusaDock on a set of flexible
kinase targets, including CDK2, VEGFr2, HIVRT, and
HIVPR.

Virtual Screening. We test MedusaDock on a VS
benchmark set taken from the Directory of Useful Decoys

Table 2. Summary for Self- And Cross-Docking Benchmarksa

self-docking cross-docking

protein PDB pairwise RMSD (Å) BRP RMSD (Å) Best NN Rank BRP RMSD (Å) Best NN Rank

CDK2 1AQ1 0.39 0.50 1 0.64 1
1DM2 0.28 1 4.42 95

antibody 1DBJ 0.47 0.27 1 0.96 1
2DBL 1.01 1 0.91 1

thrombin 1DWC 0.13 1.99 1 1.44 1
1DWD 1.32 1 2.97 16

PPARγ 1FM9 0.49 8.67 2 10.58 11
2PRG 1.32 1 10.02 64

LXR � LBD 1P8D 0.65 4.92 2 1.99 1
1PQ6 1.88 1 0.85 1

LXR � LBD 1PQ6 0.62 1.88 1 3.37 -
1PQC 1.27 1 1.53 1

trypsin 1PPC 0.11 1.84 1 4.73 5
1PPH 1.52 1 1.94 1

isomerase 4TIM 0.21 1.43 1 1.42 1
6TIM 1.54 1 1.52 1

COX-2 1CX2 0.37 6.07 5 1.46 1
3PGH 1.99 1 0.82 1

estrogen receptor 1ERR 0.34 0.66 1 7.31 5
3ERT 7.43 19 0.52 1

factor Xa 1KSN 0.34 0.95 1 1.65 1
1XKA 1.31 1 1.21 1

GSK-3 � 1Q4L 0.57 2.59 2 1.11 1
1UV5 0.37 1 2.80 297

HIV-1 RT 1C1C 0.81 0.86 1 6.07 5
1RTH 0.58 1 1.41 1

JNK 3 1PMN 0.78 0.68 1 4.68 10
1PMV 0.29 1 7.00 -

neuramini-dase 1A4Q 0.21 1.60 1 1.06 1
1NSC 0.96 1 1.57 1

P38 MAP kinase 1BMK 0.49 8.32 66 9.78 78
1DI9 5.34 10 2.40 6

PKA 1STC 0.72 0.43 1 2.84 5
1YDS 1.23 1 2.29 147

thymidine kinase 1KI4 0.25 0.79 1 0.61 1
1KIM 0.54 1 6.12 231

a We compute the RMSD for the best-ranked pose (BRP) and also list the best rank of the near-native (NN) poses (within 2 Å RMSD from
the native state). The solid line (-) corresponds to cases where the near-native poses are not sampled in MedusaDock simulations.
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(DUD) test set.36 For each target in DUD, there is a set of
known binding ligands and corresponding decoy ligands with
similar physiochemical properties, making it challenging for
VS study. Similar to the original study, we measure the
performance of VS by an enrichment plot, which shows the
percentage of known binders (true positives) recovered as a

function of the percentage of the total library screened. This
ratio is the enrichment factor (EF), which is expected to be
1 if the compounds are ranked randomly and more than 1 if
a virtual-screening method can rank the compounds so that
there are more true binders in the top-ranking compounds.

Among the 40 DUD targets, we select CDK2, VEGFr2,
HIVRT, and HIVPR for testing because they are known to
be flexible, which possibly leads to the poor enrichment
found in the original VS experiments using a rigid-receptor
docking protocol.36 In the original study, the EF1 and EF10

(EF at 1% and 10% library screened) are only 8.0 and 2.4
for CDK2, 3.0 and 1.1 for VEGFr2, 4.9 and 2.5 for HIVRT,
and 1.7 and 0.7 for HIVPR.

We apply MedusaDock for VS and find significant
enrichments for all four targets (Figure 4). The EF1 and EF10

obtained from MedusaDock are 14 and 3.6 for CDK2, 31
and 4.2 for VEGFr2, 7.5 and 3.0 for HIVRT, and 15.1 and
3.2 for HIVPR. All results are significantly higher than those
obtained using Dock3.5.36 We contribute the improvements
to the inclusion of receptor flexibility using MedusaDock.
More interestingly, we find that the true positive rates are
high among the top 10 ligands for all the 4 targets. For
VEGFr2, all the 15 top-ranked ligands are known VEGFr2
binding ligands. For the other 3 targets, there are 7, 6, and
3 true positives among the top 10 ligands for CDK2, HIVPR,
and HIVRT, respectively. Such a low false-positive rate
makes MedusaDock appropriate for VS because, in reality,
only a limited number of ligands can be tested experimen-
tally, constrained by the time and expense of the biological
essays.

DISCUSSION

We adopt a rotameric approach to model the side chain
conformational flexibility of proteins. Due to the large
physiochemical space of ligands and also the large number
of degrees of conformational freedom, it is impossible to
build an enumerative rotamer library in the same way as for
proteins.24 Therefore, we construct a rotamer library of
ligands in a stochastic manner during each MedusaDock
simulation. OMEGA by OpenEye Scientific Software (http://
www.eyesopen.com/) is often used to precompute the ligand
conformations. Although OMEGA uses a different ligand
conformation generating method, the depth-first algorithm,
we find that our simple method features similar performance
in terms of finding the bioactive rotamers (kRMSD < 1 Å)
or the computational time (∼1 s for each ligand).37 Although
the near-native ligand conformations with kRMSD smaller
than 2.0 Å, or even 1.0 Å, can consistently be sampled by
STROLL (Table 2), the native ligand rotamer will not always
be included in the rotamer library due to the stochastic nature
of library generation, which in turn might affect the efficiency
of finding and identifying the near-native binding pose. To
test the efficiency and accuracy of MedusaDock, we compare
the self- and cross-docking benchmark results with and
without manually including the native ligand rotamers in
STROLL (Figure 5). As expected, manual inclusion of the
native ligand rotamer allows MedusaDock to sample the
near-native poses more efficiently, with more near-native
poses sampled (Figure 5A). However, we find that the
inclusion of the native poses does not significantly affect
the docking prediction accuracy in terms of ranking the near-

Figure 2. Self-docking results. (A) The best-ranked pose for PPARγ
(PDB code: 2PRG) is presented, where the native and predicted
ligand poses are in gray and in color, respectively. The MedusaScore
(B) and ranking energy (C) are plotted against the corresponding
RMSD from the native pose. The MedusaScore alone cannot
distinguish the near-native poses from the decoys. For example,
the pose with the lowest MedusaScore has an RMSD larger than
10 Å. Using the ranking energy (Methods), we are able to separate
near-native poses from decoys. For the LXR � ligand binding
domain (PDB code: 1PQC), the predicted pose (D), the Medusa-
Score (E), and the ranking energy (F) are shown. By ranking the
poses using the ranking energy, the near-native poses can be
unambiguously selected. (G) The best-ranked (colored) and native
(gray) poses of estrogen receptor (PDB code: 3ERT) are partially
symmetric. For P38 MAP kinase (PDB code: 1BMK), the native
ligand (H) and predicted best-ranked (I) poses show distinct
interactions between ligand and receptor.

Figure 3. Cross-docking results. For 1PMN ligand docked to 1PMV
receptor, the backbone has severe clashes with the native pose (A).
For 1PQC ligand docked to 1PQ6 receptor (B), the lowest-RMSD
pose (colored) has a RMSD of only 2.2 Å. (C) The MedusaScore
of the best-ranked pose (BRP) in crossing-docking is compared to
that of self-docking. (D) In cross-docking, the MedusaScore of the
best-ranked near-native pose (BRNN) is also close to that of the
best-ranked poses.
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native poses (Figure 5B). This observation suggests that our
ligand sampling by STROLL is sufficient for accurate
docking.

To increase the computational efficiency, we devise a two-
step docking protocol, including the initial coarse-docking

with representative ligand rotamers followed by fine-docking
to enrich the ligand rotamers and to minimize the docking
poses. Clustering of the ligand rotamers in STROLL helps
to group similar rotamers together, and coarse-docking using
the corresponding representative conformations helps to
avoid the repetitive calculation of rigid-body motions of
similar ligand conformations. Since fine-docking only per-
turbs translation and rotation around the input coarse-docked
pose, it is crucial for the coarse-docking procedure to place
the ligand in the proximity of the native position and
orientation. As pointed out by previous flexible docking
studies,23,26 one of the challenges of docking is to fit the
ligand simultaneously to multiple deep pockets, i.e., a rugged
energy landscape (Figure 6A). We smooth the energy
landscape by turning off the van der Waals repulsion between
the ligand and the receptor side chains (Figures 6B and 7).
Therefore, in the coarse-docking step, we adopt an iterative
rigid-body docking and receptor side chain packing approach
with slowly increasing van der Waals (vdW) repulsion
between the ligand and the side chains to facilitate the search
of the rugged energy landscape (Methods). During fine
docking, the ligand and receptor side chain rotamers are
simultaneously modeled in a strongly coupled manner. The
self- and cross-docking benchmark of MedusaDock suggests
that the proposed docking protocol is quite efficient in the
sampling of the near-native poses (Figure 5C); in many cases
(∼80%), the program identifies more than 10 near-native
poses from 100 runs of MedusaDock simulations.

MedusaDock uses MedusaScore to guide docking and to
rank the docking poses. MedusaScore uses a physical-based
force field to describe the physical interactions between the
ligand and the receptor. By correctly docking the ligand to

Figure 4. Virtual-screening test on a DUD benchmark set of CDK2, VEGFr2, HIVRT, and HIVPR. The percentage of recovered known
binding ligands is plotted as a function of percentage of library screened using various VS strategies. For reference, we also plot the
enrichment curves for ideal VS, where all ligands are ranked ahead of decoys, and for random VS, where all molecules are ranked randomly.
For VEGFr2, we find all the 15 top-raked ligands are known VEGFr2 binders (ideal VS performance). For the other targets, there are 7,
6, and 3 known binders among the top 10 ligands for CDK2, HIVPR, and HIVRT, respectively.

Figure 5. Effect of inclusion of the native ligand rotamer in docking
calculations. (A) Inclusion of the native rotamer in STROLL
increases the number of near-native poses sampled by MeduasDock.
(B) The prediction accuracy in terms of ranking near-native poses
as the top one and 10 and sampled does not depend on whether
the native ligand rotamers are included. (C) The histogram of the
number of near-native poses sampled. (D) The MedusaScore of
the best-ranked poses from self-docking simulations is close to that
of the minimized poses around the input X-ray crystallographic
structure.
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the receptor, MedusaDock can capture the same important
binding interactions as in the native pose. For example, the
MedusaScore of poses minimized from the X-ray crystal-
lographic structures is close to that of the best-ranked self-
docking poses, which are mostly near-native (Figure 5D).
Despite the fact that in many cases the near-native poses
are not ranked as the top poses in cross-docking, the ranks
of these near-native poses are quite high, mostly within the
top 10. Hence, the MedusaScore of the best-ranked pose in
cross-dockingsthe predicted binding energysis similar to

that of the best-ranked near-native pose, featuring the same
binding interactions as self-docking (Figure 3). Therefore,
the MedusaScore from cross-docking simulations can be
reliably used to estimate the binding energy for virtual-
screening, which has been validated by our preliminary
virtual-screening tests. Further testing of the application of
MedusaDock in virtual-screen by benchmarking on the whole
DUD data set and by comparing with other docking programs
is required in a future study.

In this work, we do not model the receptor backbone
flexibility. As a result, there are two cases in cross-docking
where the program fails to identify the near-native poses due
to severe backbone clashes near the ligand binding pocket
(Table 2 and Figure 3A). Several approaches have been used
to model protein backbone flexibility, including ensemble
docking with multiple backbone conformations10 and back-
bone relaxation.7,23 Interestingly, our method is able to
capture the near-native poses of several challenging cases
that other flexible receptor-backbone methods missed, such
as thrombin (1dwc, 1dwd pair; Table 1 in ref 26) and PPARγ
(1FM9, 2PRG pair; Table 3 in ref 10). We believe that the
ability of MedusaDock to find near-native poses is a result
of the efficient modeling of ligand conformations and the
protein side chains using rotameric approaches. However,
we believe that further modeling of the receptor backbone
flexibility will help improve the predictive power.38

Large-scale virtual screening requires high computational
efficiency, since a large library with millions of ligands will
be docked to a target protein. The docking program can be
highly parallelized since the calculations are independent of
each other. Additionally, since the docking program is able
to sample many near-native poses with high efficiency, we
can reduce the total number of MedusaDock runs in a future
virtual-screening study. The preliminary virtual-screening
benchmark results for CDK2, VEGFr2, HIVRT, and HIVPR
clearly demonstrate the capabilities of MedusaDock in large-
scale virtual screening, even for flexible protein targets.

METHODS

Ligand Conformational Flexibility and STROLL Gen-
eration. We model the conformational flexibility of a small
molecule ligand by allowing each rotatable bond to rotate
freely and the corresponding dihedral angle to adopt preferred
values according to the hybridization of the two atoms
forming the bond. For each rotatable bond, we use the a
similar approach as Miller and Baker8 to define the torsional
degree of freedom. Briefly, if the two atoms are of sp3

hybridization, we assign a three-fold symmetry to the
dihedral angle. If the two atoms are of sp2 hybridization, we
assume a two-fold symmetry. Otherwise, if one atom is of
sp2 and the other is of sp3, we will adopt a 12-fold symmetry
for the dihedral angle. In some cases of sp2-sp2 hybridiza-
tions where there are persistent clashes, we extend the 2-fold
symmetry to 12-fold. In principle, we are able to enumerate
all possible conformations of the ligand. However, the total
number of rotamers of a ligand can be large. For example,
if a ligand has 10 rotatable bonds and the average number
of degrees of symmetry is 3, the total possible number of
rotamers will be 310 ) 59 049. Sampling the large confor-
mational space of the ligand along with its rigid-body motion
during docking is too computationally expensive. We propose

Figure 6. The rugged energy landscape of docking. (A) The ligand
binding surface (PDB ID: 1UVS) features several deep subpockets.
Successful prediction requires simultaneous fitting of the ligand to
all subpockets. (B) The schematic energy landscape with and
without vdW repulsion between the ligand and the receptor side
chains. By turning off the vdW repulsion between ligand and the
receptor side chains, the rugged energy landscape is smoothed.

Figure 7. Flowchart of coarse-docking. During coarse-docking, the
ligand is kept fixed, with only rigid-body motion allowed. Iterative
receptor side chain repacking and rigid-body docking are performed
to identify the lowest binding energy pose.

J. Chem. Inf. Model., Vol. 50, No. 9, 2010 1629



a stochastic rotamer library of ligands to model the ligand
flexibility, where we generate a set of ligand rotamers by
randomly generating nonclashing ligand conformations using
a Monte Carlo-based algorithm (Figure 8). To evaluate
whether a ligand conformation has clashes, we compute the
vdW repulsions between atom pairs whose pairwise distances
are determined by at least one rotatable bond. Two atoms
are denoted as nonlocal if their pairwise distance is deter-
mined by more than one rotatable bond and as local if their
distance is governed by only one rotatable bond. For each
local atom pair, we determine the minimal vdW repulsion
energy by enumerating the corresponding dihedral angle. We
consider a nonlocal atom pair clashing if the vdW repulsion
energy is larger than 0.6 kcal/mol and a local atom pair
clashing if the vdW repulsion energy is at least 2.4 kcal/
mol more than its minimum vdW repulsion energy. A

carbon-carbon pair (both local and nonlocal) is considered
clashing only if their distance is bellow 3 Å. A ligand
conformation is determined as clashing if one or more local
or nonlocal atom pairs are clashing. For ligands with small
degrees of freedom, we enumerate all possible nonclashing
conformations. For ligands with large degrees of freedom,
we will stop the rotamer generation once, either the
maximum number of rotamers (set to 1000) is generated or
the total number of trials (set to 106) is reached.

A Simple Clustering Algorithm to Group Similar
Ligand Rotamers in STROLL. We iteratively group similar
rotamers in STROLL. Initially, the first rotamer is selected
from STROLL to be the only element of the first cluster
and also the cluster representative. For each newly selected
rotamer, we will first decide whether it belongs to any
previously constructed cluster by comparing it with the
cluster representative. If the smallest kRMSD is less than
an input cutoff value, we assign the rotamer to the corre-
sponding cluster. Otherwise, we assign this rotamer to a new
cluster as the cluster representative. This iterative procedure
ends once all rotamers are assigned. This clustering algorithm
does not require the kRMSD calculation between all pairs
of rotamers in STROLL as does the commonly used
hierarchical clustering methods.

Coarse Docking. During coarse docking, we perform
multiple rounds of Monte Carlo (MC)-based rigid-body
docking with varying receptor side chain packing (Figure
7). During rigid-body docking, the receptor conformation is
fixed, and the ligand rigid-body motion is sampled in two
stages. First, the ligand is randomly rotated and translated
with the center of mass confined inside a 10 × 10 × 10 Å3

cubic box around the input pocket center. The docking
boundary can be arbitrarily defined. A Metropolis criterion
is used to decide whether a new ligand rotamer is accepted
or rejected. We usually perform sampling at a high temper-
ature, such as 10 kcal/mol · kB, to avoid trapping in local
minima of the energy landscape. After 600 MC steps, we
select the lowest energy pose as well as poses with dwell
time more than 20 MC steps as the candidates for the second
stage of rigid-body minimization. During the minimization,
the ligand is randomly perturbed by translation and rotation
in small steps with Gaussian distributions. The average length
and angle steps are 0.2 Å and 2°, respectively. The maximum
minimization step is 100, and the temperature is 0.25 kcal/
mol · kB. The pose with the lowest binding energy will be
selected for further study.

In order to sample the rugged energy landscape, we devise
a three-step coarse-docking protocol using multiple rounds
of rigid-body docking with varying receptor side chain
packing (Figure 7):
(1) We repack the protein side chains in the absence of the

ligand.27 We exclude residues with any atoms 10 Å away
from the docking boundary. The side chain repacking
is done by a three-round simulated annealing with
temperatures of 10, 3, and 2 kcal/mol · kB, respectively.
For each round of repacking, the total number of rotamer
trials is twice the number of total available side chain
rotamers. Since we only repack the side chains around
the ligand binding pocket, the packing converges rapidly.
Then, we perform the rigid-body docking to sample the
ligand binding pocket defined by the receptor backbone.
We turn off the vdW repulsion between the ligand and

Figure 8. Flowchart of STROLL generation. The input ligand
conformation has ideal bond lengths and angles, and only dihedral
angles of rotatable bonds are changed during the procedure. To
evaluate whether a ligand conformation has clashes, we only
compute the vdW repulsions between atom pairs whose pairwise
distances are determined by at least one rotatable bond. Two atoms
are denoted as nonlocal if their pairwise distance is determined by
more than one rotatable bond and as local if their distance is
governed by only one rotatable bond. For each local atom pair, we
determine the minimal vdW repulsion energy by enumerating the
corresponding dihedral angle. We consider a nonlocal atom pair
clashing if the vdW repulsion energy is larger than 0.6 kcal/mol
and a local atom pair clashing if the vdW repulsion energy is at
least 2.4 kcal/mol more than its minimum vdW repulsion energy.
A carbon-carbon pair (both local and nonlocal) is considered
clashing if their distance is bellow 3 Å. A ligand conformation is
determined as clashing if one or more atom pairs are clashing. For
ligands with small degrees of freedom, we enumerate all possible
nonclashing conformations. For ligands with large degrees of
freedom, we stop the rotamer generation once, either the maximum
number of rotamers (set to 1000) is generated or the total number
of trials (set to 106) is reached.
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the receptor side chains during the large-scale random
translation and rotation in order to smooth the energy
landscape (see Discussion and Figure 6). For the
minimization step, involving small perturbations of
translation and rotation, we turn on the vdW repulsion
between the ligand and the receptor side chain. The pose
with lowest binding energy is selected.

(2) Next, we perform a new round of MC rigid-body
docking by turning on the vdW repulsion between the
ligand and the receptor side chains. If the binding energy
identified during this step is lower than that in the
previous step, then we will take the identified ligand pose
for the next step. Otherwise, the ligand pose from step
1 will be used.

(3) Last, we repack the protein side chains against the
identified pose in steps 1 and 2. We only perform one
round of side chain repacking with a MC temperature
of 2 kcal/mol · kB. Then, we perform the third round of
MC rigid-body docking and identify the lowest binding
energy pose as the result of the coarse-docking.

Fine Docking. The purpose of fine-docking is to sample
ligand-receptor conformations in the vicinity of the input
pose and minimize the total binding energy. The fine-docking
is composed of the following two steps:
(1) Ligand Conformation Enrichment: Based on the input

ligand rotamer conformation, we select a subset of
rotamers from STROLL with kRMSD smaller than 2.0
Å. If the number of rotamers is smaller than 200, then
we will regenerate similar rotamers with kRMSD < 2.0
Å until either enough rotamers are generated or the
maximum rotamer generation trial is reached. Then, we
perform simulated annealing simulations, where receptor
side chains and ligand rotamers are randomly sampled
and 10 rounds of rotamer searches are performed with
the initial and final temperatures of 10.0 and 0.1 kcal/
mol · kB, respectively. We do not perform ligand rigid-
body minimization during the ligand rotamer changes.
As the simulation temperature decreases, the ligand
rotamer acceptance rate decreases. Once the ligand
rotamer can no longer be changed favorably, we perform
MC-based rigid-body minimization with small rotation
and translation perturbations for each round of rotamer
searches.

(2) Pose Minimization: We minimize the ligand poses by
simulated annealing with protein side-chain packing,
ligand subrotamer vibration, and rigid-body minimiza-
tion. We sample the ligand subrotamer search by rotating
dihedral angles within the allowed dihedral angle varia-
tion. We use an angle variation of (15° for sp3-sp3

bonds and (10° for the remaining bond types. At the
end of the simulated annealing, a quenching procedure
is applied to find the local energy minima. During the
quench, the conjugated gradient method is used for the
protein side chains minimization, and a MC-based rigid-
body minimization at zero temperature is used for ligand
rigid-body minimization.

Scoring Function. We use an extended MedusaScore28

as the scoring function to dock and rank the ligand poses.
The addition to the original MedusaScore is the inclusion
of electrostatic interactions. We assign integer charges to
various charged chemical moieties and use a distance-
dependent dielectric constant, ∼r, to model the screening
effect. We do not use any distance cutoff. To model the
environmental dependence of the electrostatic interactions,

we rescale the interaction potential by the extent of solvent
exclusion (burriness) of the corresponding residue i, Bi.

39

We define the burriness of a residue based on the number
of its contacts N, B ) min[N/Nmax, 1]. Here, N is the number
of contacts computed based on the C� atoms within a distance
cutoff 8.5 Å, and Nmax ) 14.5 is maximal number of
contacts. For two charges of the receptors, the coefficient is
(Bi + Bj)/2. If the interaction is between the ligand and the
receptor, then the coefficient is B. By introducing the
burriness-dependent factor B, we ensure that the buried
charges will have stronger electrostatic interactions than the
solvent exposed ones.

The exclusion of the vdW repulsion between the ligand
and the receptor in MedusaScore fits better to the experi-
mental binding affinity measurements.28 Therefore, we
include the ligand-receptor vdW repulsion for docking
simulations, but we use MedusaScore without the ligand-
receptor vdW repulsion as the binding energy between ligand
and receptor.

Ligand Pose Ranking. We include the total energy of
the ligand-receptor complex in addition to the binding
energy in the ranking of ligand poses, Erank ) Ebind + cΘ(Etotal

- Ecutoff). Here, the correction function Θ(x) is equal to x if
x > 0 and 0 otherwise, Ecutoff is chosen so that the top 5% of
poses with the lowest total energy have no correction to the
binding energy, and c is the weighting coefficient. The cutoff
energy is introduced to account for the large fluctuations in
total energy.23 For our benchmark cases, we find that optimal
prediction is not sensitive to the value of the coefficient c.
For example, in our test cases, we find that the coefficient c
can range approximately from 0.2 to 4 to give the optimal
prediction rate. For simplicity, we set c ) 1.

Virtual Screening. We use a ligand binding crystal
structures for DUD. The cognate ligand is removed, and its
center is used as the pocket center for restraining the ligand
position during docking. For each molecule, we perform 200
runs of MedusaDock simulations, which generate 712
docking poses on average. We then compute the ranking
energy based on the binding and total energies for each pose,
as described above. Finally, all molecules are ranked
according to their lowest Erank of all docking poses.
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