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On the significance of an RNA tertiary structure prediction

CHRISTINE E. HAJDIN,1 FENG DING,2 NIKOLAY V. DOKHOLYAN,2 and KEVIN M. WEEKS1

1Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
2Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA

ABSTRACT

Tertiary structure prediction is important for understanding structure–function relationships for RNAs whose structures are
unknown and for characterizing RNA states recalcitrant to direct analysis. However, it is unknown what root-mean-square
deviation (RMSD) corresponds to a statistically significant RNA tertiary structure prediction. We use discrete molecular
dynamics to generate RNA-like folds for structures up to 161 nucleotides (nt) that have complex tertiary interactions and then
determine the RMSD distribution between these decoys. These distributions are Gaussian-like. The mean RMSD increases with
RNA length and is smaller if secondary structure constraints are imposed while generating decoys. The compactness of RNA
molecules with true tertiary folds is intermediate between closely packed spheres and a freely jointed chain. We use this scaling
relationship to define an expression relating RMSD with the confidence that a structure prediction is better than that expected
by chance. This is the prediction significance, and corresponds to a P-value. For a 100-nt RNA, the RMSD of predicted structures
should be within 25 Å of the accepted structure to reach the P £ 0.01 level if the secondary structure is predicted de novo and
within 14 Å if secondary structure information is used as a constraint. This significance approach should be useful for evaluating
diverse RNA structure prediction and molecular modeling algorithms.

Keywords: RMSD; RNA modeling; P-value; tertiary structure

INTRODUCTION

There is likely to be a large universe of biologically impor-
tant RNAs with true three-dimensional tertiary folds me-
diated by long-range and higher-order interactions. Only a
small fraction of these structures have been visualized at
high resolution. Moreover, there exist many functionally
important RNA states, including folding intermediates and
elements containing flexible motifs, whose structures can-
not be established by direct high-resolution structure de-
termination approaches. Structure–function relationships
for these RNAs can, in principle, be addressed by accurate
three-dimensional RNA structure modeling.

The field of RNA modeling is developing rapidly and
many new ideas have been introduced for obtaining useful
structures. Strategies for three-dimensional RNA structure
prediction and modeling differ in whether they use all-
atom or simplified representations of RNA structure, allow

or require expert user intervention, facilitate incorporation
of experimental information, or are designed for small ver-
sus large RNA motifs (for reviews, see Shapiro et al. 2007;
Jonikas et al. 2009). Ultimately, the goal of all modeling
approaches is the same: to generate an accurate structural
model that is useful for designing, testing, confirming, or
rejecting chemical and biological hypotheses.

RNA molecules are built up from just four nucleotide
building blocks and form a single predominant secondary
structure, the A-form RNA duplex. Thus, RNA structure
prediction might be easier than for proteins (Tinoco and
Bustamante 1999). Even with these simplifying features,
a given RNA can fold into a very large number of potential
structures. An RNA of N nucleotides can form roughly 1.8N

base-paired secondary structures (Zuker and Sankoff 1984)
and a large number of tertiary folds.

The best way of summarizing the quality of an RNA
structure model will vary depending on the prediction goals
and methods. The quality of a tertiary structure model at
the level of its overall fold can be summarized in a simple
way as the root-mean-square deviation (RMSD) between
predicted and accepted RNA structures over a representa-
tive set of atoms; typically, a ribose atom or the phosphate
position. A strength of using the RMSD to characterize
structure prediction is that this metric can be applied to
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both simplified and all-atom models. Other metrics are
necessary to characterize the accuracy of local interactions.
For example, local base pairing and stacking interactions
are sensitive to the all-atom RMSD, the global distance test
(GDT) (widely used to assess template-based models of pro-
tein structure) (Zemla 2003; Keedy et al. 2009), or the re-
cently introduced interaction network fidelity (INF) that
applies specifically to RNA (Parisien et al. 2009). The decision
to focus on the global fold versus local interactions depends
on the specific modeling objective. For longer RNAs with
long-range tertiary interactions, it currently remains a major
challenge to predict the overall architecture correctly, whereas
predictions for small helical RNAs, or of individual motifs
within large RNAs, can sometimes correctly identify many
individual hydrogen-bonding and base-stacking interactions.

In this work, we develop an approach for evaluating
algorithms designed to predict the overall architecture of
relatively large RNAs (50–200 nucleotides [nt]) character-
ized by extensive long-range interactions that involve more
than individual helices (for example, Fig. 1A). We focus on
metrics for assessing the global fold of an RNA at roughly
‘‘nucleotide resolution,’’ which is also the level of RNA
structural information that is obtained from most biochem-
ical experiments when applied to large RNAs. This class of
experiments includes chemical probing, through-space cleav-
age and cross-linking, and solution hydrodynamic measure-
ments. To this end, we address the magnitude of RMSD that
constitutes a successful prediction as opposed to models that
are not significantly different from those expected by chance.
Throughout this work, we compare structures based on
RMSDs calculated over all phosphate positions, although our
conclusions apply to correlations calculated at any backbone
position.

Success and failure for tertiary structure prediction are
obvious at the extremes. For example, for an RNA of mod-
erate size like the SAM-I riboswitch (94 nt) (Winkler et al.
2003), a model with 4.5 Å RMSD relative to the crystallo-
graphically determined structure (Montange and Batey
2006) clearly corresponds to a good prediction, whereas a
prediction at 18 Å RMSD is unlikely to be helpful in gen-
erating strong, testable biological hypotheses (Fig. 1A,C).
At 13.2 Å RMSD, a model for this RNA clearly resembles
the experimentally determined structure (Fig. 1B). How-
ever, given the intrinsic rigidity of RNA helices and the
limited number of nucleotide building blocks, it is not clear
whether a model that differs from the accepted structure by
13.2 Å RMSD constitutes a successful prediction, especially
if the secondary structure is used as a constraint during
modeling.

RNA chain length is an important variable in establish-
ing the RMSD value that describes a nonrandom pre-
diction. The range of RMSD values that correspond to
similar RNA structures increases with chain length. For
example, two RNAs with a 4.5 Å RMSD are similar if their
lengths are 94 nt (Fig. 1A), but are dissimilar if they com-

prise short base-paired duplexes. This feature is common to
both protein (Cohen and Sternberg 1980; Reva et al. 1998)
and RNA structure prediction, but may be more pro-
nounced with RNA for two reasons. First, structured RNAs
tend to be more elongated and less globular compared with
proteins of similar mass. Second, stacked helices comprise
the major structural building block for RNA, are relatively
rigid, and can span large linear dimensions. If a helix is
modeled to be in roughly the right place, but is angled rel-
ative to the correct orientation, this error can propagate to
produce large RMSD values with modest degrees of angular
deflection.

A second criterion distinctive to RNA structure pre-
diction is that the pattern of base pairing that comprises an
RNA secondary structure is often known with perfect or
near-perfect accuracy prior to three-dimensional modeling.
Accurate RNA secondary structures can be obtained from
comparative sequence analysis (Michel and Westhof 1990;

FIGURE 1. Comparison of an accepted RNA structure with modeled
tertiary structures as a function of RMSD similarity. The experimen-
tally determined (Montange and Batey 2006) and simulated structures
of the SAM riboswitch (94 nt, 2gis) are shown as gray and colored
backbones, respectively (A–C).
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Gutell et al. 2002; Roth and Breaker 2009) and experimen-
tally constrained prediction (Deigan et al. 2009). Most RNA
helices, including those that incorporate mismatched and
noncanonical base pairs, will show good (<2 Å RMSD)
alignments if the structure is simply assumed to be A-form.
For large RNAs, enforcement of native-like base pairing
dramatically reduces the allowed conformational space.
RMSD values for predicted structures should therefore be
significantly smaller if information regarding base-pair con-
straints is included in the modeling algorithm.

In this work we develop a framework for assessing the
confidence that a predicted RNA tertiary structure is sig-
nificantly different from a chance prediction. We generate
a large number of decoy structures using replica exchange
discrete molecular dynamics (DMD) simulations and then
calculate the magnitude of RMSD that indicates any two
structures are more similar than two randomly generated,
but still RNA-like, chains. We also establish an empirical
power-law relationship for mean RMSD as a function of
chain length that makes it possible to define analytical ex-
pression for the significance and nonrandomness of RNA
structure prediction.

RESULTS

Selection of target structures

RNA structures, ranging in size from 27 to 161 nt, were
obtained from the RCSB structure database (Table 1). RNA
structures were required to (1) be solved at a resolution of
3.3 Å or better; (2) have nontrivial higher-order tertiary
interactions, defined as having close helix packing, long-
range intrastrand interactions, or a pseudoknot; (3) contain

a single complete or nearly complete chain; and (4) form
a stable tertiary structure in the absence of protein binding.
We excluded RNAs that form simple A-form helices or
stem–loops or that form Y-shaped structures without sig-
nificant long-range tertiary interactions. For RNAs with
multiple structures, the example with the best resolution or
that was the most complete was selected. The RNA struc-
tures were also chosen to be distributed evenly over the
27–161-nt length range, given the examples available in the
current RCSB database (Berman et al. 2000).

Generation of decoy structures by DMD

Ideally, the quality of an RNA tertiary structure prediction
would be determined by comparing the agreement between
a predicted versus an experimentally determined model.
This similarity would then be compared with the differ-
ences observed between members of a diverse group of
experimentally determined decoy structures of similar
size. Unfortunately, even with the recent increase in high-
resolution structures, there are still too few known RNA
structures to serve as a statistically valid set of decoys in any
given size range.

We therefore used replica exchange DMD simulations
(Ding et al. 2008a) to generate decoy structures for rep-
resentative RNAs. RNA decoys were generated by DMD
using a coarse-grained model in which each nucleotide is
represented as three pseudo-atoms corresponding to the
phosphate, sugar, and base moieties (Ding et al. 2008a).
Interactions between pseudo-atoms include bonded, non-
bonded, and loop entropy terms. This coarse-grained RNA
model yields topologically reasonable RNA-like folds for a
large number of small RNAs (Ding et al. 2008a) and for

TABLE 1. RNA targets with decoy structures generated by DMD

RNA
PDB
ID

N
(nt)

Imposed base pairing

– +

<RMSD>

(Å) s

RMSD
(P = 0.01)

<RMSD>

(Å) s

RMSD
(P = 0.01)

Sarcin/ricin domain 1q9a 27 8.3 1.7 7.8 4.2 1.7 0.1
Viral RNA pseudoknot 1l2x 28 12.4 1.7 8.2 2.7 0.8 0.1
Vitamin B12 aptamer 1ddy 35 16.0 1.9 10.6 7.9 1.9 1.9
4.5S RNA fragment 1duh 45 19.8 1.7 13.6 8.5 1.4 4.3
SARS virus pseudoknot 1xjr 47 20.5 1.7 14.1 7.4 1.8 4.7
Guanine riboswitch 1u8d 67 24.0 1.9 19.2 14.1 1.6 8.8
tRNAAsp 2tra 75 24.7 1.7 20.7 18.7 1.7 10.0
Thi-box riboswitch 3d2g 83 27.0 1.9 22.3 11.7 1.9 11.2
SAM riboswitch 2gis 94 29.4 2.0 24.3 17.7 2.0 12.9
SRP RNA 1z43 101 27.9 1.8 25.6 16.5 1.7 13.8
glmS ribozyme 2gcs 125 35.4 2.0 29.4 24.0 2.0 16.9
RNase P specificity domain 1nbs 155 38.6 2.1 33.6 24.5 1.8 20.3
Tetrahymena P546 domain 1gid 158 36.5 1.8 34.1 25.3 1.8 20.7
Lysine riboswitch 3d0u 161 39.5 1.9 34.5 23.9 1.8 21.0
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tRNA when constrained by pairwise experimental informa-
tion (Gherghe et al. 2009). Replica exchange DMD makes it
possible to efficiently overcome energy barriers in a rugged
energy landscape and to explore conformational space
broadly while simultaneously maintaining conformational
sampling in a regime that corresponds to a physically rele-
vant free energy surface (Zhou et al. 2001; Okamoto 2004).

A priori knowledge of the secondary structure dramat-
ically increases the correlation (and therefore reduces the
RMSD) between simulated and experimentally determined
structures. We therefore also generated decoy structures for
each target RNA in which the DMD pseudo-atoms corre-
sponding to the bases were constrained to pair. In all cases,
we selected for compact decoy structures by requiring that
the radius of gyration be within 1.2-fold of the native
structure.

Analysis of RNA decoy structures

To generate an ensemble of statistically significant decoy
structures, the replica exchange DMD simulations must
reach equilibrium in conformational sampling. We there-
fore evaluated whether the DMD ensembles generated from
different starting states converged. We initiated simulations
starting from two very different starting states, the exper-
imentally determined native structure and a linear, ex-
tended, structure generated in silico for seven of the target
RNAs (Table 1, 1q9a, 1l2x, 1xjr, 1u8d, 2gis, 1nbs, 1gid).
Both the pairwise RMSD distributions (Fig. 2) and DMD
energies (data not shown) were nearly identical for simu-
lations initiated from either the native or fully extended
states. This similarity in the final distribution of structures
holds independent of whether the native pattern of base
pairing is imposed during the simulation (Fig. 2). Thus,
replica exchange DMD yields fully equilibrated sets of RNA
decoy structures for RNAs as large as 161 nt.

We then used replica exchange DMD to generate decoy
structures for our complete set of RNAs (Table 1) and
calculated RMSD values for all pairwise combinations of
decoy structures. Representative RMSD distributions for a
viral RNA pseudoknot (28 nt), the purine riboswitch (67 nt),
and the specificity domain of RNase P (155 nt) are shown in
Figure 3. These profiles have three critical features.

First, the pairwise RMSD distributions are Gaussian-like
(Fig. 3, cf. solid and dashed lines). A Gaussian-like dis-
tribution in pairwise RMSD distribution is consistent with
the Central Limit Theorem that holds that the sum of a
large number of random variables (structures) should be
normally distributed. Gaussian-like behavior also means
that each distribution can be characterized by its mean
RMSD value and a standard deviation.

Second, mean RMSD values increase as a function of
chain length (Fig. 3; Table 1). Hence, no single RMSD value
represents a nonrandom prediction. An RNA modeling
algorithm must therefore produce structures with compar-

atively smaller RMSD values for short RNAs if these struc-
tures are to be better than those expected by chance.

Third, imposing the native pattern of base pairing has
a large effect on the RMSD distributions. Constraining
structures to have native base pairing biases the distribu-
tion to smaller RMSD values by 4–15 Å, depending on
RNA length (Fig. 3; Table 1).

A power-law relationship for the radius of gyration
and chain length in RNA

Given the mean and standard deviation distribution for
each RMSD profile, we will derive below an analytical
expression relating RMSD to chain length (N). We there-
fore sought to determine the proper mathematical form for
this relationship. The mean RMSD for protein structure
prediction is approximately proportional to the radius of
gyration. This relationship reflects that the distances between
corresponding atoms in two structures scale with the overall
dimensions of the macromolecule (Reva et al. 1998). We
expect that the mean RMSDs will also scale in a similar way
with chain length and the radius of gyration for RNA.

We calculated the radius of gyration, Rg, for all of the
RNAs in our target set (Table 1) plus a set of additional
RNAs to more fully populate the Rg versus N curve (Fig. 4).
The best fit gives:

Rg z 3:8 N0:41: ð1Þ

The key result is the exponent, 0.41, which lies between the
values expected for a molecule composed of closely packed
spheres (1/3) and for a self-avoiding chain (3/5) (Doi
1996). This exponent is different from a prior analysis that
suggested Rg for RNA scales with an exponent of 0.33
(Hyeon et al. 2006). The earlier work did not filter simple

FIGURE 2. Replica exchange DMD simulations as a function of
starting state and of enforcing native base pairing. Simulations were
initiated either from the crystallographic structure or from a linear,
extended state for the purine riboswitch (67 nt, 1u8d) (Batey et al.
2004).
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helices of 25 nt or less and included the 16S and 23S ri-
bosomal RNAs, which achieve their structures only as ribo-
nucleoprotein complexes. Excluding these two sets of RNAs
from the Hyeon et al. (2006) data set yields an exponent
consistent with this work.

Both Pearson’s correlation coefficient and the nonpara-
metric Wald–Wolfowitz test indicate that the 0.41 expo-
nent better fits the Rg data than either of the other two
limits (Fig. 4). This result is intrinsically satisfying because
it suggests that folded RNAs are more structured than ran-
dom self-avoiding chains, but do not fully maximize their
packing density. This exponent is also slightly larger than
the 0.33 value found for proteins (Reva et al. 1998), con-
sistent with the less-globular structures of most RNAs rel-
ative to proteins of the same mass (Holbrook 2008).

DISCUSSION

We have used DMD to calculate statistically significant sets
of decoy structures for a representative set of RNAs. These

decoy structures correspond to compact, RNA-like, but
largely incorrect structures for each target RNA. Mean
RMSD values increase with chain length, both when base
pairing was allowed to vary or was constrained to corre-
spond to that in the accepted structure (Fig. 5, top). In both
cases, these distributions are well fit by a power-law
relationship, a N0.41 – b, where the exponent 0.41 is derived
from Rg and N (Fig. 4; Box 1). Since the mean RMSDs
defined by the empirical relationship with respect to RNA
length should be positive, the RNA length should be N >
Nc = (b/a)1/0.41. The critical length, Nc, is z5.3 when no
base-pair information is imposed during modeling and 16
Å when base-pair constraints are enforced (a and b for
a chance prediction are given in Box 1). These values are
sensible and correspond to the minimal lengths of RNA
with significant secondary and tertiary structures. Mean
RMSD values increase by roughly fivefold as chain length
increases from 27 to 161 nt.

In contrast, the standard deviation in RMSD for each
distribution is approximately constant at 1.8 Å (Fig. 5,
bottom). It is not clear what physical property of RNA
governs the relative invariance of the standard deviation in
RMSD; interestingly, a similar behavior appears to hold for
protein structure (Reva et al. 1998).

These distributions (Fig. 5) represent a measure of the
agreement between any two structure predictions for an
RNA of a given size as expected by chance. Although we
generated these distributions based on a specific DMD
model for the RNA decoy structures, available evidence
suggests these relationships are general. First, the DMD
model captures the driving forces of RNA folding and is
able to predict the native structures of many small RNAs
from a large set of competitive decoys (Ding et al. 2008a).
Second, the replica exchange simulation efficiently samples
RNA conformational space, which is populated by many
thermodynamically viable decoy structures with competi-
tive base pairing and higher-order packing interactions.
Third, similar distributions are obtained by creating decoys

FIGURE 4. Dependence of radius of gyration on chain length for
compact RNAs with higher-order tertiary structure interactions. Fits
to the 0.33 and 0.60 exponents (but not to the 0.41 exponent) show
systematic deviations from the points.

FIGURE 3. Distributions of decoy structures. RNA decoy structures
were stimulated using replica exchange DMD starting from fully
extended linear structures either without or with constraints that
enforce the native pattern of base pairing (solid gray lines). Distribu-
tions show good Gaussian-like behavior (dashed lines). RNAs shown
are a viral RNA pseudoknot (28 nt), the purine riboswitch (67 nt),
and the specificity domain of RNase P (155 nt) (Egli et al. 2002;
Krasilnikov et al. 2003; Batey et al. 2004; Gherghe et al. 2008).
Standard deviations are z1.8 6 0.3 Å in all cases, with the exception
of the narrower distribution for the 28-nt pseudoknot RNA with base-
pair constraints.
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using an alternative approach, by threading short RNA
sequences onto the structures of longer RNA molecules (see
Materials and Methods). Critically, analysis of the effect of
enforcing the native pattern of base pairing on pairwise
RMSD (Fig. 3) is only possible with the DMD-based ap-
proach for generating decoys.

Using the empirical relationships for RMSD distribution
as the function of RNA length (Fig. 5), it is possible to
create a scoring function for the significance of an RNA
tertiary structure prediction given the chain length (N) and
the RMSD relative to the accepted structure (Box 1). This
assessment of RNA tertiary structure prediction can be
summarized as a P-value. Smaller P-values correspond to
predicted structures with greater statistical significance.

The P-value calculation provides a broad measure of
prediction quality for RNAs between 35 and 161 nt. These
P-values can be used to evaluate predictions for both small
and large RNAs and for algorithms that make use of prior

information about base pairing versus those that predict all
interactions de novo.

The mean and standard deviation obtained for each
distribution can also be used to calculate the RMSD be-
tween a known and predicted three-dimensional struc-
ture that corresponds to a predicted structure which
differs from a random prediction at a chosen confidence
level. We suggest that P < 0.01 represents a successful
prediction (Fig. 5, top, dashed lines). Analytical expres-
sions for the RMSD that corresponds to a chance prediction
versus that for a successful prediction at the P < 0.01 level are
given in Box 1.

Our laboratories are developing accurate and efficient
methods for modeling complex RNA structures (Badorrek
et al. 2006; Ding et al. 2008a; Sharma et al. 2008; Deigan
et al. 2009; Gherghe et al. 2009; Lavender et al. 2010). Many
other laboratories are also making innovative contributions
to the RNA modeling field (Massire and Westhof 1998; Tan
et al. 2006; Das and Baker 2007; Das et al. 2008; Parisien
and Major 2008; Yu et al. 2008; Jonikas et al. 2009). We
undertook the present study in order to create a framework
for benchmarking any RNA modeling algorithm. We illus-
trate the usefulness of the P-value approach outlined here
by considering two recent studies that have focused on
refining the tertiary fold of tRNA.

For an RNA the size of yeast tRNAAsp (75 nt), a model
should have an RMSD over all phosphate atoms of 10.0 Å
or better to reach P # 0.01 if the native pattern of base
pairing is enforced during modeling. For comparison,
RMSD values between tRNAAsp and two unrelated RNAs
of similar size, the HDV and thi-box RNAs, are 23 and
27 Å, which correspond to the near-maximal P-value of
0.99. In contrast, the free tRNAAsp and its energetically ac-
cessible protein-bound conformation superimpose with an
RMSD of 6.5 Å (P = 0.00001) (Fig. 6).

In one approach, native-like tertiary structures for yeast
tRNAAsp were obtained given only the sequence and using
a combination of SHAPE chemistry (Merino et al. 2005;
Wilkinson et al. 2006) and pairwise constraints generated
using a sequence-directed cleavage agent. This biochemical
information was then refined using DMD (Gherghe et al.
2009). The cleavage agent was placed at nucleotide posi-
tions 4, 49, and 67 in tRNAAsp, and structures were refined
using the tertiary constraints provided by any one, two, or
all three experiments for seven possible total refinements
(Fig. 6A, summarized as spheres). Of the seven refinements,
five yielded models with P-values significantly lower than
0.01 (Fig. 6A). These refinements correspond to P-values of
2.0 3 10�5 to 2.0 3 10�3 (calculated given the correct
pattern of base pairing as established by SHAPE). Two
structures refined to RMSDs of z10.8 Å, corresponding to
a P-value of 0.03, which represent fair predictions, but not
equivalent to the P < 0.01 level.

In a second approach, tRNA was modeled by represent-
ing each nucleotide as a single bead centered at the C39

FIGURE 5. Mean pairwise RMSD as a function of RNA chain length.
Decoy structures either constrained to form base pairs found in the
experimentally determined native structure or allowed to form any
energetically favorable set of base pairs are shown. Solid lines
correspond to distributions expected for RNA-like, but chance, folds.
Dashed lines indicate the RMSD cutoff corresponding to a prediction
better than that expected by chance at the P < 0.01 level. Lines indicate
fits to the power-law relationship ÆRMSDæ � a N0.41-b ; a and b values
are given in Box 1. The mean and standard deviation for each
distribution are shown with symbols and error bars.
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atom, enforcing base pairing, and filtering structures based
on hydroxyl radical cleavage and SAXS data using the NAST
program. Resulting models for E. coli tRNAPhe (76 nt) had
RMSDs of 8.0, 13.6, and 15.8 Å (Jonikas et al. 2009).
Although these RMSD values were calculated at the C39

position, comparison with the framework developed here is
appropriate because RNA backbone atom positions are
highly correlated (see Materials and Methods). These RMSD
values correspond to P-values of 0.00023, 0.36, and 0.80
(Fig. 6A, squares); the first of these represents a prediction
at the P < 0.01 level. Overall, this analysis of two recent and
different approaches for refining RNA structure models
makes clear that experimentally constrained modeling of
complex RNA structures has substantial promise for re-
fining structures to P-values #0.01, but that additional
effort is required to reach this level consistently.

An alternative to the RMSD, the GDT is a good indicator
of similarity between two structures. The GDT total score
(GDT-TS), as implemented in the LGA program (Zemla
2003), has been widely used to rank protein models (Keedy
et al. 2009; Zhang 2009) and, recently, to evaluate RNA
structures (Jonikas et al. 2009; Parisien et al. 2009). LGA
uses multiple alignments and calculates the largest set of
atoms that deviate by less than a user-defined cutoff. GDT
scores span a uniform scale with zero equal to no similar-
ity and 100 indicating near perfect agreement. It had not
been determined what GDT-TS score corresponds to a sig-
nificant tertiary fold prediction for tRNA. We find that
RMSD and GDT-TS are highly correlated (r2 = 0.86) for
RNA models at medium resolution (Fig. 6B, open circles).
A GDT-TS value $37 indicates a strong prediction, with a
P-value >0.01 (as defined in Box 1). However, the GDT-TS
increases rapidly as structures become highly similar. This
is exemplified in the comparison of free tRNAAsp with it
synthetase-bound form. Of the 75 nt that comprise these two

structures, 70 positions have RMSDs <5 Å. The remaining
nucleotides have large variations, with RMSDs >10 Å. This
gives a GDT-TS of 51, whereas the overall RMSD is 6.5 Å
(Fig. 6B, filled circle). Thus, for very detailed analyses in-
volving threading, homology modeling, or evaluating single
site mutations, the GDT-TS is more discriminating. How-
ever, for evaluating RNA modeling at the level of the global
fold, especially for RNAs with long-range tertiary interac-
tions, the RMSD and GDT-TS are both good metrics for
determining similarity.

Returning to our original example oulined in Figure 1,
a 4.5 Å RMSD for an RNA of 94 nt using an algorithm that
enforces native base pairing (Fig. 1A) corresponds to
a highly significant prediction (P # 10�6). In contrast,
a 18.2 Å RMSD (Fig. 1C) is readily identified as a poor
prediction by its P-value = 0.74. For an RNA of 94 nt, the
13.2 Å prediction falls at the P = 0.016 level. Inspection of
the agreement between this structure and the accepted
structure (Fig. 1B) supports the view that this prediction
lies near the lower limit at which the model might be useful
for designing instructive biological hypotheses. P-value
significance testing should prove broadly useful in ongoing
efforts to benchmark and improve RNA tertiary structure
prediction and modeling algorithms.

MATERIALS AND METHODS

Target RNAs and analysis of power-law relationships
for RNA

RNA structures were obtained from the RCSB structure database
(Berman et al. 2000). For RNAs with multiple structures, the
example with the best resolution or that was most complete was
selected. If the U1A protein was present to facilitate crystallization
(Ferré-D’Amaré and Doudna 2000), this protein component was

BOX 1. Significance (P-value) analysis for RNA tertiary structure prediction

Relationship between ÆRMSDæ and N (from Fig. 5):

ÆRMSDæ = a � N (0.41) � b

Imposed base pairing: � +

chance P < 0.01 chance P < 0.01

where a = 6.4 6.4 5.1 5.1
b = 12.7 16.9 15.8 19.8

Given N and the RMSD between predicted and accepted structures, m, the prediction significance (P-value) is:

P -value =
1 + erf ðZ

ffiffiffi
2
p� �

2

where Z =
m � ÆRMSDæ

sm

and sm � 1.8 Å
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removed. To establish a power-law relationship between the radius
of gyration and RNA length, we calculated the radius of gyration
(Rg) for the structures in Table 1, plus the following (listed by PDB
code): 1ato, 1nem, 2tob, 1q9a, 1l2x, 437d, 1eht, 1rnk, 1fmn, 1q8n,
1mme, 1xjr, 2qwy, 3e5c, 1kh6, 2goz, 1u8d, 1y26, 1eov, 1tra, 1vby,
3d2g, 2hoj, 2gis, 1z43, 2gcs, 1nbs, 1gid, 2qbz, 1u9s, 3djz, 1u6b, 1x8w,
3bwp, and 2a64. The radii of gyration were fit to Equation 1. We
used both Pearson’s correlation coefficient, r, and the nonparametric
Wald–Wolfowitz test to evaluate whether the best fit exponent
of 0.41 is better than the limits for closely packed spheres (0.33) or
a self-avoiding chain (0.60). P-values for the latter two values were
0.0096 and 0.0003, which indicate statistically significant deviations;
in contrast, the P-value for the 0.41 exponent was 0.24, indicating no
significant deviation from the proposed power-law model. We also
calculated the exponent for a complete data set of all RNA structures
in the RCSB database (as described by Hyeon et al. 2006). The
exponent over all deposited structures is 0.33, exactly as reported
previously; however, if short (<25 nt) and ribosomal RNAs are
excluded and only single-chain RNAs are considered, the exponent
is 0.46, in agreement with the analysis shown in Figure 4.

Generation of RNA decoys by replica exchange DMD

We used replica exchange DMD (Ding et al. 2008a,b) to explore
RNA conformational space and generate statistically valid ensem-
bles of decoy structures. Each RNA nucleotide is represented as
three pseudo-atoms representing the phosphate, sugar, and base
moieties (Ding et al. 2008a). Bonded terms included bond angles
and dihedrals; nonbonded terms included base pairing, stacking,
hydrophobic, and phosphate–phosphate repulsion interactions;
an explicit term was included for loop entropy. Replica DMD
simulations were performed in parallel over temperatures ranging
from low (T = 0.20) to high (T = 0.24); this temperature range
covers the folding temperatures of the coarse-grained RNA model
(Ding et al. 2008a). Replicas with neighboring temperature values
were periodically (every 2000 time units [tu]) exchanged in a
Metropolis manner. Temperatures were exchanged between two
replicas, i and j, at temperatures Ti and Tj, and with energies
Ei and Ej according to the exchange probability r, where r = 1 if
D = (1/kBTi - 1/kBTj)(Ej - Ei) # 0, and r = exp(-D), if D > 0.
Simulations were carried out for 800,000 tu, yielding 12,000
structures. Decoy generation for a 150-nt RNA requires z20 h
on a single-core equivalent Xenon CPU (2.3 GHz). Individual
structures were accepted for pairwise analysis subject to the fol-
lowing: (1) simulations were allowed to equilibrate for 200,000 tu
to exclude structures that reflected residual memory of the starting
state; (2) frames were required to be different by 200 steps to
exclude correlated consecutive structures; and (3) structures were
required to be compact and have a radius of gyration that was
within 1.2-fold of the accepted structure.

Generation of RNA decoys by threading

As an alternative to using replica exchange DMD to generate
decoy structures, we also generated decoys by threading the SARS
pseudoknot (47 nt) and the guanine riboswitch (67 nt) onto a set
of longer RNA structures (1u8d, 1gid, 1nbs, 1xjr, 1z43, 2gcs, 2tra,
2qbz, 3irw, 3gx3, 3d0u, 3d2g, and 3kc4 3kcr). Decoys, corre-
sponding to 47 or 67 nt segments in the long RNAs, were filtered
by the structures that (1) have Rg values within 1.2-fold of the test

FIGURE 6. Use of P-values to benchmark RNA tertiary structure
models. (A) Spheres represent P-values for seven models (indicated
with Mx) of tRNAAsp based on experimentally derived tertiary structure
information, refined by DMD (Gherghe et al. 2009). (Squares) P-values
for three refinements (indicated with Nx) of tRNA using a one-bead
model for RNA and filtering by hydroxyl radical and SAXS data using
the NAST program (Jonikas et al. 2009). P-values for comparison of
tRNAAsp (2tra, 75 nt) (Westhof et al. 1988) with two unrelated RNAs of
similar size, the HDV ribozyme (1vby, 76 nt) (Ke et al. 2004), and the
Thi-box riboswitch (3d2g, 77 nt) (Thore et al. 2008), plus tRNAAsp as it
exists when bound by its synthetase (1asy) (Ruff et al. 1991), are shown
as a horizontal bar and a filled circle, respectively. RMSDs are cal-
culated over all phosphate positions with the exception of the NAST
models, which correspond to the C39 atom. (B) Comparison of RMSD
and GDT-TS values for the seven Mx tRNA models (open circles), plus
the comparison between the 2tra and 1asy structures (filled circle).
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RNAs and (2) initiate at positions at least 10 nt apart. The lim-
itations of this approach are that the number of decoy structures is
small and a subset does not have realistic secondary structures. It
is also not possible to use threading to constrain the secondary
structure to be native-like nor to generate realistic decoys for
structures much larger than 70 nt, given the current structure
database. RMSD distributions for the pseudoknot and riboswitch
RNAs are 18.7 6 2.4 and 22.2 6 2.6 Å, in good agreement with
the decoys generated by DMD.

Pairwise RMSD and Gaussian distribution
calculations

RMSD was calculated as:

RMSD = min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+
N

i=1

ðr*1

i � Ar
*2

i Þ
2=N

s( )
; ð2Þ

where A is an arbitrary rotation matrix. The calculation was
performed using the Kabsch algorithm (Kabsch 1976) over all
phosphate positions in each RNA. RMSD distributions were fit to
a Gaussian curve,

y = Ae � x�x0ð Þ2=2s2½ �; ð3Þ

where A is the amplitude, x0 is the mean, and s is the standard
deviation.

Effect of calculating RMSD values over other
RNA atoms

We calculated RMSDs for free tRNAAsp (2tra) (Westhof et al.
1988) relative to this tRNA as bound by the tRNA synthetase (Ruff
et al. 1991) (RNA molecule in 1asy). RMSD values as a function of
atom are: phosphate, 6.80 Å; C39, 6.37 Å; C49, 6.66 Å; N1, 6.59 Å;
N3, 6.68 Å; and over all atoms, 7.11 Å. The single-atom RMSD
values are essentially identical; the all-atom value is larger by 0.3–
0.6 Å.

Calculation of confidence intervals

The P < 0.01 line in Figure 5 was calculated from a standard
Z-score relationship. For P < 0.01, the RMSD value is obtained as:

RMSD p < 0:01 = x0 � 1:8s: ð4Þ

The RNA prediction significance, or P-value, is also calculated
from the Z-score, given a predicted structure that differs from an
accepted structure by an RMSD of m:

Z =
m� ÆRMSDæ

sm
; ð5Þ

where ÆRMSDæ is the expected RMSD obtained from the best-fit
relationship in Box 1 and is a function of chain length, N; sm is
the standard deviation for decoy structures of length N (Fig. 5,
bottom). For predictions of RNAs with lengths $35 nt, this value
is approximately constant at 1.8 Å. The statistical probability of
obtaining a given RMSD value is estimated as the P-value:

P Zð Þ= 1ffiffiffiffi
p
p

Zz

�‘

e �x2=2ð Þdx

=
1ffiffiffiffi
p
p

Z0

�‘

e �x2=2ð Þdx +

Zz

0

e �x2=2ð Þdx

0
@

1
A

= 1 + erf Z
. ffiffiffi

2
p� �h i.

2;

ð6Þ

where erf(x) is the standard Gauss error function and Z is given by
Equation 5. A simplified summary of this calculation is provided
in Box 1. The lower limit on P-value is capped at #10�6. We
provide a spreadsheet for calculating the RNA tertiary structure
prediction significance P-value, given N and the RMSD between
the predicted and accepted structure (Supplemental Material).
This calculation and source code are also available at the iFoldRNA
server (http://iFoldRNA.dokhlab.org) (Sharma et al. 2008).

SUPPLEMENTAL MATERIAL

Supplemental material can be found at http://www.rnajournal.org.
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