A Structural Model for Vinculin Insertion into PIP$_2$-Containing Membranes and the Effect of Insertion on Vinculin Activation and Localization

Graphical Abstract

Highlights

- The vinculin tail contains two basic patches with distinct lipid binding roles
- The basic collar recognizes PIP$_2$
- The basic ladder recognizes acidic phospholipids
- Lipid binding increases vinculin activation and turnover at focal adhesions

Authors

Peter M. Thompson, Srinivas Ramachandran, Lindsay B. Case, ..., Nikolay V. Dokholyan, Clare M. Waterman, Sharon L. Campbell

Correspondence
campbesl@med.unc.edu

In Brief

Vinculin is a cytoskeletal protein that controls cellular adhesion and migration. Thompson et al. show that two basic patches on the tail domain cooperate to bind lipid membranes containing PIP$_2$. These binding events regulate vinculin activation and turnover at focal adhesions.
A Structural Model for Vinculin Insertion into PI(P)_2-Containing Membranes and the Effect of Insertion on Vinculin Activation and Localization

Peter M. Thompson, 1,6 Srinivas Ramachandran, 1,7 Lindsay B. Case, 2,6 Caitlin E. Tolbert, 3,9 Arpit Tandon, 1 Mihir Pershad, 4 Nikolay V. Dokholyan, 1,6 Clare M. Waterman, 2,6 and Sharon L. Campbell 1,6,10,7

1Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
2Cell Biology and Physiology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
3Department of Cell Biology and Physiology
4Department of Chemistry
5Lineberger Comprehensive Cancer Center
University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
6Present address: Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
7Present address: Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA, USA
8Present address: Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
9Present address: Cellular Signaling and Cytoskeletal Function Lab, Francis Crick Institute, London NW1 1AT, UK
10Lead Contact
*Correspondence: campbesl@med.unc.edu

SUMMARY

Vinculin, a scaffolding protein that localizes to focal adhesions (FAs) and adherens junctions, links the actin cytoskeleton to the adhesive super-structure. While vinculin binds to a number of cytoskeletal proteins, it can also associate with phosphatidylinositol 4,5-bisphosphate (PI(P)_2) to drive membrane association. To generate a structural model for PI(P)_2-dependent interaction of vinculin with the lipid bilayer, we conducted lipid-association, nuclear magnetic resonance, and computational modeling experiments. We find that two basic patches on the vinculin tail drive membrane association: the basic collar specifically recognizes PI(P)_2, while the basic ladder drives association with the lipid bilayer. Vinculin mutants with defects in PI(P)_2-dependent liposome association were then expressed in vinculin knockout murine embryonic fibroblasts. Results from these analyses indicate that PI(P)_2 binding is not required for localization of vinculin to FAs or FA strengthening, but is required for vinculin activation and turnover at FAs to promote its association with the force transduction FA nanodomain.

INTRODUCTION

Vinculin (Vcl) is a large (117 kDa), ubiquitously expressed and highly conserved scaffolding protein present in higher eukaryotes. It localizes to focal adhesions (FAs) and adherens junctions (Johnson et al., 1998), and has been implicated in regulating cell morphology, cell migration (Coll et al., 1995), cell stiffness (de Duc et al., 2010; Shen et al., 2011), adhesion strength (Mierke et al., 2008), FA turnover, and FA morphology (Xu et al., 1998a, 1998b).

Vcl contains an N-terminal head domain (Vh) and a C-terminal tail domain (Vt) connected by a proline-rich linker (Bakolitsa et al., 2004). Vh and Vt bind each other and maintain Vcl in an autoinhibited conformation (Bakolitsa et al., 2004; Cohen et al., 2005; Johnson and Craig, 1995b). Release of autoinhibition occurs via binding of ligands and possibly phosphorylation (Chen et al., 2006; Golji et al., 2012). While Vcl has been shown to associate with ~20 binding partners, the tail domain alone binds filamentous actin (F-actin) (Huttelmaier et al., 1997) and acidic phospholipids (Johnson and Craig, 1995a) specifically phosphatidylinositol 4,5-bisphosphate (PI(P)_2) (Palmer et al., 2009). These tail domain interactions are believed to coordinate with Vh interactions to facilitate Vcl activation (Weekes et al., 1996).

In FAs, PI(P)_2 is generated by phosphatidylinositol phosphate kinase type 1 gamma (PIPKIγ) (van den Bout and Divecha, 2009) and, through PI(P)_2 production, PIPK1γ regulates FA dynamics (Li et al., 2013; Wu et al., 2011). PIP2 is also required for FA formation (Sun et al., 2007) and promotes recruitment and activation of Vcl at FAs (Legate et al., 2011; Wu et al., 2011). However, the consequences of the Vcl/PI(P)_2 interaction are less clear. While association of Vcl with PI(P)_2 has been implicated in numerous processes including cell spreading, cell migration, FA turnover, and force transduction (Chandrasekar et al., 2005; Chinthalapudi et al., 2014; Diez et al., 2009; Saunders et al., 2006), the Vcl constructs used in these studies may not be selective in their disruption of PI(P)_2 binding. In addition, PI(P)_2 has been reported to regulate Vcl phosphorylation (Ziegler et al., 2002) and trafficking (Halstead et al., 2010; Marquez et al., 2009).

Vt contains two strongly basic surfaces, the basic ladder and the basic collar (Figure 1) (Bakolitsa et al., 1999). Mutation of the basic collar (Bakolitsa et al., 2004; Chinthalapudi et al., 2014;
Saunders et al., 2006; Ziegler et al., 2002), the basic ladder (Chandrasekar et al., 2005; Chinthalapudi et al., 2014), or deletion of the C terminus (Chandrasekar et al., 2005; Diez et al., 2009; Saunders et al., 2006; Wirth et al., 2010; Ziegler et al., 2002) impairs PIP2 binding. However, the use of multiple mutations or deletions within Vt can alter its structure and perturb other Vt functions (Palmer et al., 2009). For example, two separate Vcl variants with reported PIP2 defects of comparable severity, Vcl K952Q/K956Q/R963Q/R966Q and Vcl R1060Q/K1061Q, exhibit different phenotypes in exerting force on a substrate (Diez et al., 2009).

Recently, a crystal structure of a Vt mutant bound to a soluble, short-chain PIP2 was solved, providing the first structural model for how PIP2 binds to Vt (PDB: 4PR9) (Chinthalapudi et al., 2014). In the structure, Vt R1060A forms a trimeric oligomer when bound to 1,2-dioctanoyl-sn-glycero-3-phospho-(1′-myo-inositol-4′,5′-bisphosphate) (PIP2-C8). Two of the Vt molecules recognize the PIP2 head group via the basic collar, whereas the third Vt molecule interacts with the PIP2 head group through residues K944 and R945 in the basic ladder. Mutations to the basic collar (Vt K1061Q) or the basic ladder (K944Q/R945Q) disrupt PIP2-dependent lipid co-sedimentation (Chinthalapudi et al., 2014). Later work confirmed that Vt dimerizes in the presence of PIP2 (Chinthalapudi et al., 2015). However, these models fail to explain how PIP2 association with Vt promotes membrane insertion. In addition, the two lipid-disrupting mutants produced distinct phenotypes when expressed in Vcl-null mouse embryonic fibroblasts (Vcl−/− MEFs). Whereas Vcl K944Q/R945Q prevents exchange of Vcl at FAs, Vcl K1061Q only mildly disrupts exchange of Vcl at FAs (Chinthalapudi et al., 2014).

Using computational modeling, site-directed mutagenesis, and lipid co-sedimentation of Vt in membrane mimetics, we confirm that both the basic ladder and collar are involved in binding to acidic phospholipids. However, our data suggest an alternative structural model: the basic collar promotes PIP2-specific binding while the basic ladder drives membrane insertion. Cells expressing Vcl variants specifically deficient in lipid binding retain the ability to reinforce cell stiffness upon mechanical deformation, but show altered FA turnover, perturbed nanoscale Vcl localization within FAs, and reduced Vcl activation at FAs.

RESULTS

Computational Modeling Predicts Distinct Roles for the Basic Collar and Basic Ladder

To better understand how Vt binds PIP2, we modeled the interaction of the PIP2 head group with Vt. The head group, D-inositol 4,5-bisphosphate, was docked to Vt residues 895–1,065 using MedusaDock (Ding et al., 2010; Yin et al., 2008). The N-terminal strap was omitted from Vt for docking, as its removal retains the Vt fold and actin binding, but increases association with PIP2 (Palmer et al., 2009). MedusaDock identified the basic collar, specifically residues R910, K915, K924, and R925, as the Vt site with the highest specificity for the PIP2 head group. The side chain of R910 interacts primarily with the hydroxyl of C4, K915 with the hydroxyl of C6 (which would place it near the phosphoryl group on C1 in the full PIP2 molecule), K924 with the hydroxyl of C5, and R925 with the phosphoryl group on C4 (Figure 2A).

Next, discrete molecular dynamics (DMD) simulations (Ding et al., 2008; Dokholyan et al., 1998; Shirvanyants et al., 2012) were performed with a full-length PIP2, 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-(1′-myo-inositol-4′,5′-bisphosphate), constraining the PIP2 head group to the basic collar and using G0 constraints on C1/C2 contacts (with the interaction square-well depth 0.5x, where x is the DMD energy unit [Dokholyan et al., 1998; Proctor et al., 2011]) for all residues in Vt (residues 896–1,065) or G0 constraints only for residues in helices (using Vt constructs 896–1,065 or 896–1,059). After selecting 2,000 snapshots with a binding energy less than −10 kcal/mol (Ding et al., 2010), the residues in contact with PIP2 were tallied (Figure 2B). In all cases, the contacts at the basic collar remained high. When using G0 constraints only for helical residues, some contacts were observed at the basic ladder, although contacts at the basic collar were more frequent (Figure 2B). For more complete sampling of full-length PIP2 binding Vt, we performed DMD simulations in which the PIP2 head group was unrestrained. In these simulations, we see PIP2 sampling all regions of Vt, which argues against the head group binding the basic collar being a kinetically trapped state. We clustered the DMD snapshots. Four of the seven clusters feature the head group interacting with the basic collar (Figure S1A). Furthermore, the largest cluster of conformations recapitulates head group interactions with the basic collar that were seen in the docking simulations (Figure S1B).

While both MedusaDock and DMD simulations identify the basic collar as the primary site for PIP2 head group recognition, these simulations were performed in the absence of a lipid bilayer. To better mimic the physiological interaction at the membrane, all-atom, explicit solvent molecular dynamics simulations of Vt bound to PIP2 in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer were conducted. At the time of the simulation, Vt (residues 896–1,055) was bound to PIP2 as in the docking pose (Figure 2A) and the Vt helix bundle was...
oriented roughly parallel to the lipid bilayer. We performed three simulations of 100 ns each. In all three simulations, the contacts between basic collar and PIP₂ head group were maintained, even as the PIP₂ molecule diffused around in the bilayer (Figure S2A). Furthermore, helix 3 of Vt was found to contact the bilayer in all three simulations. The side chains of basic ladder residues K944, R945, K952, and K956 inserted into the lipid bilayer (Figure 2C, Movies S1 and S2). We also performed three 100 ns simulations of Vt in the same starting configuration in a POPC-only bilayer. In these control simulations, basic collar interactions with the membrane were not observed and interactions of helix 3 with the membrane were inconsistent. In one of the three simulations, Vt diffuses away from the membrane (Movie S3). The control simulations confirm that PIP₂ anchors Vt to the membrane through the basic collar, which facilitates basic ladder interactions with the bilayer.

Short-Chain PIP₂ Binds to Vt at a Hydrophobic Patch on Helices 4 and 5 in Solution

The mode of binding of Vt to membrane-associated PIP₂ from our simulations (Figure 2C) is significantly different from the recently published crystal structure of Vt R1060A complexed to a short-chain PIP₂ lipid (PIP₂-C8) (Chinthalapudi et al., 2014) and the model docked to a lipid bilayer (Chinthalapudi et al., 2015). Chinthalapudi et al. (2014, 2015) show that the sidechain of K1061 binds to the PIP₂ head group, but not R910 and R925, which interact in our model. In addition, the proposed orientations of membrane-associated Vt molecules within a dimer do not match our modeled orientation. A possible explanation for this discrepancy is the use of PIP₂-C8 instead of PIP₂ contained in a lipid bilayer. We titrated ¹⁵N-enriched Vt with PIP₂-C8 at various ratios and monitored nuclear magnetic resonance (NMR) spectral changes by 2D ¹H–¹⁵N heteronuclear single-quantum coherence (HSQC) analyses (Figure 3A). In doing so, we hoped to avoid potential artifacts from crystallization and use of the R1060A mutant. At Vt:PIP₂-C8 ratios of 1:2.5 and 1:6 a white precipitate formed, as previously reported (Chinthalapudi et al., 2015), suggesting that Vt was saturated with PIP₂-C8 at a ratio of 1:2.5. Perturbations in chemical shift or line width map to a site on helices 3, 4, and 5, were comprised primarily by a hydrophobic patch. Peaks corresponding to these residues significantly shift or broaden, suggesting a strong interaction (Figures 3B–3D). In contrast, peaks corresponding to residues in the basic collar do not significantly shift or broaden with increasing PIP₂-C8 (Figures 3B–3D). Weaker shifts are found in peaks corresponding to the basic ladder. These results suggest that the fatty acid tails of PIP₂-C8 drive binding in solution, and that the PIP₂ head group associates with the basic ladder because of its proximity to the hydrophobic patch. An interaction between the acyl chains and the hydrophobic patch was not observed in the crystal structure of the Vt:PIP₂-C8 complex (Chinthalapudi et al., 2014).

PIP₂ was also deemed sufficient for the generation of Vt oligomers (Chinthalapudi et al., 2014, 2015). To test the ability PIP₂-C8 to induce Vt oligomerization in solution we used TROSY for a rotational correlation times (TRACT) NMR experiment (Lee et al., 2006) to calculate the effective rotational correlation time of Vt (Figure 4). Oligomerization of Vt would slow tumbling and significantly increase the rotational correlation time. However, the rotational correlation time of Vt did not increase at a 1:1 ratio of Vt:PIP₂-C8, suggesting that either Vt does not oligomerize in the presence of PIP₂-C8 or that Vt oligomers induced by binding PIP₂-C8 are unobservable by solution NMR. Such oligomers would either be insoluble or large multimers with very fast
magnetic relaxation. These explanations are inconsistent with a functional Vt dimer or trimer, suggesting that PIP₂-C8 is insufficient to appropriately study the Vt:PIP₂ interaction.

The R1060Q/K1061Q PIP₂-Deficient Vt Variant Is a Poor Actin Crosslinker

The Vcl variant, LD-CT (Vcl R1060Q/K1061Q), has been used in multiple studies as a lipid-binding-deficient Vcl construct (Chandrasekar et al., 2005; Diez et al., 2009; Ziegler et al., 2002). High-speed co-sedimentation assays revealed that Vt LD-CT retains actin binding (Figure S3), while low-speed actin co-sedimentation assays show that Vt LD-CT is deficient in F-actin crosslinking (Figure S3).

The Basic Collar Is Required for Lipid Binding and F-Actin Crosslinking

As our molecular dynamics simulations indicate that R910, K915, K924, and R925 play key roles in binding the PIP₂ head group, we measured PIP₂ binding of Vt K924A/R925A (Vt BC_2A) and Vt R910A/K915A/K924A/R925A (Vt BC_4A) using a PIP₂ co-sedimentation assay (Palmer et al., 2009). While Vt BC_2A exhibited a modest decrease in binding to PIP₂, with roughly half as much Vt binding at 5% PIP₂ (Figure 5A), Vt BC_4A showed an even greater drop in PIP₂ binding, with a 6-fold decrease in binding at 5% PIP₂. These findings suggest that the basic collar residues R910, K915, K924, and R925 are important for PIP₂ binding.
Actin-binding and crosslinking activities for these variants were evaluated to test the specificity of the PIP$_2$ binding defect. Vt BL$_2$A, Vt BL$_3$A, and Vt BL$_4$A all retain actin binding (Figure 6B) and crosslinking (Figure 6C). These data support the use of these basic ladder variants in studying the biological function of the Vcl/PIP$_2$ interaction.

The Vt Basic Ladder Drives Association with Acidic Liposomes

As mutations in both the basic collar and basic ladder impair Vt binding to PIP$_2$-containing liposomes, it is difficult to determine which site is responsible for PIP$_2$ specificity. Co-sedimentation experiments conducted with Vt BC$_4$Q or Vt BL$_4$A and increasing amounts of PIP$_2$ showed similar association profiles (Figure 7A). We tested the hypothesis that the basic ladder is critical for membrane insertion by performing lipid co-sedimentation assays in the absence of PIP$_2$, but with increasing concentrations of phosphatidylserine (PS). Wild-type (WT) Vt bound to these liposomes in a PS-dependent manner, with nearly 70% of Vt bound when the liposomes contained 60% PS (Figure 7B). Vt BC$_4$ retained some binding, with 15% of Vt BC$_4$ associated with 60% PS-containing liposomes. However, Vt BL$_4$A did not show significant binding, even at high levels of PS, suggesting that the basic ladder drives interactions with negatively charged lipid membranes. As mutations within the N-terminal half of helix 3 impair lipid association yet retain actin interactions, these variants are reasonable tools to study the effect of lipid binding by Vcl in cells.

Lipid Binding Regulates Vcl Nanoscale Localization, Activation, and Turnover in FAs

Our structural and biochemical characterization of Vt basic collar and ladder mutants identified a Vcl variant with a specific lipid binding deficiency to facilitate studies of Vcl lipid association in a cellular context. We expressed Vcl WT, Vcl BL$_2$A, or Vcl BL$_4$A in VcI$^{-/-}$ MEFs and plated them on fibronectin (FN)-coated coverslips. Tagging with GFP revealed that Vcl BL$_2$A and Vcl BL$_4$A still localize to FAs (Figure S4A). Because Vcl nanoscale localization within FAs has been shown to correlate with Vcl function (Case et al., 2015), we utilized iPALM, a super-resolution fluorescence microscopy technique that provides nanometer (10–20 nm) localization accuracy of individual proteins (Case et al., 2015; Kanchanawong et al., 2010) to determine the nanoscale position of tandem-Eos Vcl BL$_4$A in FAs. Previous studies have established protein localization to three nanodomains organized along the z axis in FAs: the membrane proximal integrin signaling layer (25–54 nm from the extracellular matrix [ECM] on the coverslip surface) where Vcl is initially recruited and activated; the force transduction layer (55–84 nm from the ECM) where active Vcl interacts with talin and recruited and activated; the force transduction layer (55–84 nm from the ECM) where active Vcl interacts with talin and strengthens FAs; and the actin regulatory layer (85–150 nm from the ECM) where Vcl binds actin (Case et al., 2015; Case and Waterman, 2015). iPALM analysis showed that while Vcl WT molecules had a median localization of 70 nm above the ECM, as reported previously (Case et al., 2015; Kanchanawong et al., 2010; Liu et al., 2015), Vcl BL$_4$A molecules localized significantly deeper at a median distance of 80 nm above the ECM. This change in distribution of Vcl BL$_4$A relative to Vcl WT was driven by a loss of molecules from the force transduction
layer and re-localization to the actin regulatory layer (Figure 8E). These results suggest that lipid binding plays a role in regulating Vcl’s vertical position in the FA, promoting its association with the force transduction layer and likely F-actin. As PIP$_2$ binding contributes to Vcl activation in vitro (Bakolitsa et al., 1999, 2004; Izard et al., 2004; Weekes et al., 1996), and Vcl activation promotes a shift of Vcl from the force transduction layer to the actin regulatory layer of the FA (Case et al., 2015), we employed a Förster resonance energy transfer (FRET)-based biosensor designed to monitor the activation state of Vcl (Case et al., 2015; Chen et al., 2005) in Vcl$^{-/-}$ MEFs, to determine if disruption of PIP$_2$ binding alters Vcl activation. The biosensor exhibits a low FRET ratio when Vcl is active and a high FRET ratio when Vcl is inactive (Case et al., 2015; Ling et al., 2002). In contrast, Vcl variants Vcl BL_2A and Vcl BL_4A exhibited higher FRET ratios in FAs, closer to values obtained in the cytoplasm. In addition, the

![Figure 5. Mutations within the Vt Basic Collar Disrupt PIP$_2$ Binding and F-Actin Crosslinking](image-url)

(A) Liposome co-sedimentation assay. Mutations in the Vt basic collar disrupt binding to PIP$_2$-containing liposomes. (B–E) Actin co-sedimentation assays. At high-speed co-sedimentation (B) and (D) the Vt basic collar mutants retain actin binding, but at low-speed co-sedimentation (C) and (E) a decrease in F-actin crosslinking is observed. n ≥ 3, error bars are ±SEM. See also Figure S3.
FRET ratio in FAs for Vcl WT was significantly lower than the FRET ratio in FAs for Vcl BL_4A. These results suggest that Vcl membrane association plays an important role in activating Vcl at FAs.

Previous studies have reported conflicting results regarding whether PIP$_2$ binding contributes (Chinthalapudi et al., 2014; Saunders et al., 2006) or not (Chandrasekar et al., 2005) to Vcl binding to and dissociation from FAs, which is related to cell migration. We used fluorescence recovery after photobleaching (FRAP) experiments to monitor the relative amount of mobile and immobile GFP-tagged Vcl at FAs and to measure its dissociation from FAs ($T_{1/2}$ of recovery) in MEFs. Our data showed that lipid binding significantly increased the fraction of Vcl that remained stably bound and immobile within FAs (Figure 8H). Indeed, GFP-Vcl BL_4A fluorescence at FAs recovered by 75% after photobleaching in our FRAP assays, while only 60% of GFP-Vcl WT fluorescence recovered. An intermediate amount, 68%, of Vcl BL_2A recovered at FAs, although this was not significantly different from Vcl WT or Vcl BL_4A. Examination of the $T_{1/2}$ of recovery showed that, contrary to the work of Chinthalapudi et al., lipid binding did not affect the rate of Vcl dissociation, by decreasing the immobile fraction of Vcl. This is consistent with previous work, as constitutively active Vcl is less mobile (Cohen et al., 2006).

Vcl Lipid Binding Does Not Regulate Cell Spread Area, FA Size, FA Number, or Response to External Forces at FAs

While the Vcl/PIP$_2$ interaction contributes to Vcl activation, localization, and turnover at FAs, it has also been reported to have a critical role in FA number, morphology, and force sensing (Chandrasekar et al., 2005; Diez et al., 2009). To test this, we expressed N-terminally GFP-tagged Vcl WT, Vcl BL_2A, and Vcl BL_4A in Vcl$^{-/-}$ MEFs and monitored the number and size of FAs as well as cell spread area (Figure S4). No significant differences were observed, suggesting that lipid binding by Vcl does not have a large impact on the general maintenance of FAs or cell spreading.

Previous work has reported that loss of lipid binding by Vcl impairs the cellular response to force (Diez et al., 2009). However, these measurements were made using Vcl LD-CT, a poor actin bundler (Figure S3B). Using 3D force microscopy, we evaluated the ability of cells expressing our Vcl constructs to respond to external forces on integrins. FN-coated magnetic beads were
placed in cell culture and allowed to adhere to Vcl−/− MEFs. We subsequently pulled on the bead and tracked its movement. Cells expressing Vcl BL_2A or Vcl BL_4A exhibited an expected decrease in bead displacement, although the decrease was not statistically significant for Vcl BL_2A (Figure S5). These data suggest that Vcl lipid binding does not significantly regulate the cellular response at FAs to external force.

DISCUSSION

The lack of a strong experimentally validated structural model for the Vcl/PIP$_2$ interaction and contradictory biochemical and cellular data has hindered our understanding how PIP$_2$-dependent membrane association of Vcl contributes to Vcl functions (Chandrasekar et al., 2005; Diez et al., 2009; Halstead et al., 2010; Humphries et al., 2007; Saunders et al., 2006). The use of non-specific Vcl mutants has resulted in seemingly contradictory data (Chinthalapudi et al., 2014; Diez et al., 2009). While the crystal structure from Chinthalapudi et al. (2014, 2015) provides a starting model, the studies were conducted on a Vt mutant and a soluble short-chain PIP$_2$, which limits the extrapolation of the model to the interaction at a biological membrane.

Here, we provide an alternative model for how Vcl binds PIP$_2$ at a membrane. Our model is in agreement with published biochemical data: mutation at K944 and R945 or K1061 weakens PIP$_2$ binding by Vt (Chinthalapudi et al., 2014). However, according to our model, the basic collar and the basic ladder play unique roles in binding to PIP$_2$-containing membranes. While the basic ladder drives insertion into acidic membranes, the basic collar specifically recognizes PIP$_2$. The relative abilities of mutations at these sites to disrupt PIP$_2$- or PS-dependent liposome association are consistent with this model.

Our data further highlight the importance of the C terminus and the basic collar in F-actin crosslinking (Shen et al., 2011; Tolbert et al., 2014). The weaker actin filament crosslinking activity of Vt BC_2A and the nearly absent actin-crosslinking activity of Vt BC_4A and Vt BC_4Q suggest that residues R910, K915, K924, and R925 and their positive charge are integral to formation of the Vt dimer that facilitates actin bundling. As we did not see a decrease in the ability of MEFs to respond to external forces when expressing basic ladder Vcl variants, our data suggest that previous links to the Vcl/lipid interaction and mechanotransduction are due mainly to disruption of the ability of Vcl to crosslink actin (Diez et al., 2009). Indeed, it may be that the role of Vcl in mechanotransduction and cell stiffness is driven primarily by actin binding and crosslinking.

In addition, our NMR data suggest that PIP$_2$-C8 is a poor substitute for membrane-associated full-length PIP$_2$. Consistent with these observations, previous studies have shown that short-chain PIP$_2$ analogs bind to the PKCα C2 domain in a distinct manner from membrane-bound PIP$_2$ molecules (Guerrero-Valero et al., 2009; Lai et al., 2010). We find that PIP$_2$-C8 does not associate with the basic collar, but instead binds the basic ladder and the hydrophobic patch on helices 4 and 5, consistent with previous findings that the hydrophobic PIP$_2$-C8 acyl tails, rather than the head group, can drive binding (Pu et al., 2010). The nature of the lipid bilayer plays a significant role in the interaction of Vt with PIP$_2$ and future studies should account for this.

Our data support the use of basic ladder mutations to study the VCL/PIP$_2$ interaction in cells (Cohen et al., 2005) given the actin-crosslinking defect exhibited by Vt constructs with mutations at the basic collar and the key role of the basic ladder in membrane insertion. However, care should be taken in interpretation of these results; mutation of the basic ladder appears sufficient to disrupt sustained interactions with a lipid bilayer, but may not prevent transient interactions with PIP$_2$. This, in addition to potential redundancies in FAs, may explain the lack of a strong cellular phenotype when disrupting the Vcl/PIP$_2$ interaction.

Our findings do provide evidence that PIP$_2$ binding contributes to Vcl activation (Golji et al., 2012; Ziegler et al., 2002), as lipid binding increases the fraction of activated Vcl at FAs. In addition, PIP$_2$ association increases the immobile fraction of Vcl, contrary to previous reports that PIP$_2$ binding recycles activated Vcl from FAs (Chinthalapudi et al., 2014). As PIP$_2$ binding enhances Vt...
Figure 8. PIP$_2$ binding Regulates Vcl Nanoscale Localization, Activation, and Turnover in FAs

(A and B) Representative iPALM renderings for MEFs expressing Vcl WT-tdEos (A) or Vcl BL_4A-tdEos (B) are shown. The color scale represents Z position (nm), with FAs oriented with the distal tip facing right. Scale bar, 1 μm.

(C) Mean of Z median measurements from individual FAs.

(D) Averaged Z position frequency histograms of molecules within FAs. Solid line, mean frequency; shaded region, bootstrapped 95% confidence about the mean.

(E) Mean fraction of molecules localized to each of the three FA layers in FAs. Coloring in (D) and (E) is used to highlight the three FA layers. ISL, integrin signaling layer (red, 25–54 nm above the coverslip); FTL, force transduction layer (green, 55–84 nm above the coverslip); ARL, actin regulatory layer (purple, 85–150 nm above the coverslip). Graphs in (C), (D), and (E) represent measurements of n = 59 FAs from three Vcl WT-tdEos expressing cells and n = 58 FAs from six Vcl BL_4A-tdEos expressing cells.

(legend continued on next page)
phosphorylation by Src and PKCζ (Ziegler et al., 2002), reduced association of Vcl with the membrane would also reduce the ability of these kinases to phosphorylate the tail domain, potentially increasing the fraction of Vcl that can revert to its autoinhibited conformation. This may explain the decreased activation and broader distribution of Vcl across FA layers. We previously showed that a constitutively active mutant of Vcl (D974/K975/R976/R978A) induced a strong shift in Vcl nanoscale localization from the integrin signaling layer to the actin regulatory (Case et al., 2015); our PIP2 binding mutant induced a weaker shift from the integrin signaling layer to the force transduction layer. These findings suggest that Vcl/PIP2 binding alone is not sufficient for full activation of Vcl in FAs. Rather, it is possible that PIP2 binding “primed” Vcl for actin binding in the actin regulatory layer, but is dispensable for talin binding in the force transduction layer. There may be multiple conformations of Vcl that do not simply correspond to “active” or “inactive,” which would correspond to the combinatorial interactions and post-translational modifications that regulate the conformation of Vcl at FAs. Our results further highlight the complex relationships between Vcl PIP2 and FAs, and demonstrate a role of PIP2 binding in Vcl activation, turnover, and localization of Vcl within FAs.

EXPERIMENTAL PROCEDURES

Expression and Purification of Vt

Vt expression constructs were a gift from Robert Liddington (Sanford Burnham Prebys Medical Discovery Institute). The pET15b Vt expression vector encodes a His-tag followed by a thrombin cleavage site and then chicken Vt residues 884–1,066. Vt was expressed and purified as described previously (Palmer et al., 2009; Thompson et al., 2014).

Lipid Co-sedimentation Assays

Vt binding to PIP2 was evaluated by lipid co-sedimentation assays using small, unilamellar vesicles as reported previously (Palmer et al., 2009; Thompson et al., 2014). Details are provided in Supplemental Information.

Actin Co-sedimentation Assays

Actin co-sedimentation assays to assess actin-binding and actin-crosslinking (bundling) properties of Vt WT and Vt mutants were performed as reported previously (Shen et al., 2011).

Mutagenesis

Vt variants were generated using QuikChange Site-Directed Mutagenesis Kit (Stratagene) and the sequences were verified by DNA sequencing (GENEWIZ).

Computational Modeling

Modeling of the interaction of the PIP2 head group with Vt (residues 896–1,055) was performed with MedusaDock (Ding et al., 2010; Yin et al., 2009). MedusaDock docking simulations constrain the Vt secondary structure but allow sampling of the Vt sidechain and PIP2 head group using rotamer libraries, with the lowest energy pose reported.

Modeling of the interaction of the full PIP2 molecule, 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-(1′-myo-inositol-4′,5′-bisphosphate), with Vt in the absence of a lipid bilayer was performed with DMD simulations (Ding et al., 2008; Doholyan et al., 1998; Shrivanyants et al., 2012). The initial docking pose was taken from the MedusaDock simulations. In these all-atom DMD simulations, Go constraints were used to maintain intramolecular Ca/C2 contact distances between Vt residues during the simulation. These constraints were applied for all residues in Vt or only residues in α helices in different simulations. The Go constraints limit the potential for Vt unfolding while the PIP2 is allowed to sample the protein surface. This combination allows for greater sampling of potential Vt:PIP2 interactions while maintaining the structural integrity of Vt.

Modeling of the interaction of PIP2 within a lipid bilayer was performed using all-atom, explicit solvent molecular dynamics simulations. A lipid bilayer of POPC with a single PIP2 molecule was generated, and an initial pose of Vt (residues 896–1,055) bound to PIP2 using the model generated from MedusaDock. Three simulations of Vt bound to PIP2 in a POPC bilayer and three simulations of same configuration without PIP2, each lasting 100 ns, were performed. Results are provided in Supplemental Information.

NMR

NMR samples were prepared in 40 mM 2-(N-morpholino)ethanesulfonic acid (pH 5.5), 50 mM NaCl, 0.01% NaN3, 2 mM DTT, and 5% D2O. Samples contained 50 μM 15N-enriched Vt with variable amounts of short-chain PIP2 (1,2-dioctanoyl-sn-glycerol-3-phospho-(1′-myo-inositol-4′,5′-bisphosphate; PIP2-C8), Avanti Polar Lipids). NMR titrations and TRACT (Lee et al., 2006) experiments were collected on a 700 MHz Varian Inova magnet with a Bruker CryoProbe and console. [1H,13C] 2D HSQC NMR experiments were performed to monitor the change in the backbone H-N signals (backbone assignments, BMRB: 15653) as a function of the short-chain PIP2 ligand concentration (Palmer and Campbell, 2008). Further details can be found in Supplemental Information.

Cell Culture and Transfection

Vinculin knockout murine embryonic fibroblasts (Vcl−/− MEFs) were provided by Dr. Eileen Adamson (Burnham Institute, La Jolla, CA) and cultured, maintained, and transfected as reported previously (Tolbert et al., 2014).

FRAP Assays

FRAP experiments were performed with Vcl−/− MEFs expressing GFPEGFPPEGFP-labeled Vcl WT or Vcl variants. Time-lapse total internal reflection fluorescence (TIRF) microscopy was performed at 37°C using an Apo TIRF 100× 1.49 numerical aperture oil immersion objective lens (Nikon Instruments) on an inverted Eclipse Ti microscope system (Nikon Instruments). EGFP images were captured with a CCD (CoolSNAP HQ2; Photometrics) operated in the 5 MHz readout mode using 488 nm laser illumination (Coherent). Cells were imaged for three frames at 5 s intervals prior to photobleaching, and then the 405 nm laser illumination of the FRAPPA system (Andor Technology) was used to bleach an entire FA in the protruding region of the cell. After photobleaching, cells were imaged at 2 s intervals for 1 min, and then at 5 s intervals for 3 min. Final images were drift corrected using the rigid body method of the StackReg ImageJ plugin (Thyvenaz et al., 1998), and the mean intensity inside individual bleached FAs was corrected for imaging-induced photobleaching using a cytoplasmic region outside of the bleached region. Fluorescence recovery was fit with a single exponential to determine the $T_{1/2}$ and T_{fr}.
percent recovery of each FA. Cells that retracted after bleaching were discarded from the analysis.

FRET Assays

FRET experiments were performed using wide-field epifluorescence as described previously (Chen et al., 2005). In brief, a Vcl activation FRET biosensor in which fluorophores were inserted into the Vcl protein between the head and tail (mTurquoise, donor) and that the C terminus (mNeon-Green37, acceptor) such that FRET occurs when Vt interacts with the Vcl head in the autoinhibited conformation and FRET decreases when autoinhibition is relieved and Vcl is activated (Case et al., 2015). The raw mTurquoise, FRET and Neon Green images were aligned using the rigid body method of the StackReg ImageJ plugin (Thevenaz et al., 1998). The FRET ratio was calculated using MATLAB to run the Danuser Lab Biosensors Processing Software 2.1 (available for download: http://lcdb.hms.harvard.edu/software.html). Differences between mean FRET ratios were determined by an ANOVA followed by Tukey’s post hoc analysis and differences were considered significant at p < 0.05.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, six figures, and three movies and can be found with this article online at http://dx.doi.org/10.1016/j.str.2016.12.002.

AUTHOR CONTRIBUTIONS

S.L.C., N.V.D., and C.M.W. conceived and supervised the research. Computational modeling and simulations were performed by S.R. and A.T. Biochemical experiments were performed by P.M.T. and M.P. Cellular experiments were performed by C.E.T. and L.B.C. Data were analyzed by P.M.T., C.E.T., L.B.C., S.R., A.T., and M.P. M.T.M., C.E.T. and L.B.C. wrote the manuscript with discussion and improvements from all authors.

ACKNOWLEDGMENTS

P.M.T. was supported by the American Heart Association (12PRE11820012). Funding to S.L.C. and N.V.D. was supported by the NIH (1R01GM115597). Funding to C.E.T. was supported by the NIH (GM029860). The authors wish to thank Evan Nelsen, Greg Young, and Paul Sapienza for their assistance with methods as well as Keith Burridge for his feedback on the manuscript.

Received: June 21, 2016
Revised: November 10, 2016
Accepted: December 12, 2016
Published: January 12, 2017

REFERENCES

